
Hyperbolic geometry

1.1 Parallel lines on the hyperbolic plane
Let TA be perpendicular to a such that T lies on
a. Furthermore let −−→AK be perpendicular to AT

⇒ AK ∩ a = ∅. Consider the rays emanating from A

in TAK∠. They intersect the segment TK for Lemma
1.17. Assign a ray to the set A if it intersects a and
to B if not. Then, apply the Dedekind axiom to these
sets ⇒ limiting parallels.

A

T

KL

Figure 1.1: Limiting parallels

Definition 1.1
−→
AC ‖

−→
TR, if −→AC is the limiting parallel to −→TR. If D ∈ A, then −−→AD called

intersecting line of −→TR. If E ∈ B, then −→AE called ultraparallel line to −→TR.

Lemma 1.2 If −→AB ‖ −−→CD, then for any point C∗ on the line of CD: −→AB ‖ −−→C∗D.

Proof. One can distinguish 2 cases, both can be proved by the Pasch axiom.

Theorem 1.3 The parallelism of rays is symmetric and transitive.
Proof. Symmetry: Let −−→AK ‖

−→
BL be such that

L and K are points "far enough". Draw the angle
bisector of BAK∠ and ABL∠, they intersect each
other in O. Let TA and TB be points on −−→AK and
−→
BL respectively, such that OTA⊥AK and OTB⊥BL.
Then −−→TAK ‖

−−→
TBL for the previous lemma. But then

−−→
TBL ‖

−−→
TAK, since it is symmetric to the angle bisector

of TBOTA∠.
Transitivity (Only in the plane and only for one
case): −−→AK ‖ −→BL ∧ −→BL ‖ −−→CM ?⇒

−−→
AK ‖

−−→
CM

1) If −−→CM ∩ −−→AK 6= ∅ ⇒︸︷︷︸
Pasch

−−→
CM ∩

−→
BL 6= ∅.

2) If f is a ray, emanating from C in BCM∠ ⇒
f ∩
−→
BL 6= ∅ ⇒ B′ and

−−→
B′L ‖

−−→
AK ⇒ f also inter-

sects −−→AK

L

KM

O

T
B

T
A

A

B

Figure 1.2: Proof: Theorem 1.3

Definition 1.4 Two line is parallel to each other if they have parallel rays.
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1.1.1 Perpendicular transverse of ultraparallel lines

Theorem 1.5 (Bolyai) Every pair of ultraparallel lines has a unique line, perpendicular
to both lines (perpendicular transverse).

Proof. We use without proof, that the angle, formed
by a given line and the intersecting rays, emanating
from a point, not on the line, changes continuously.
Let the −−→AK and −→BL be two rays on two ultraparallel
lines, such that BAK∠ = π

2 and ABL∠ < π
2 . Then

exists a point M on the ray −−→AK such that AMB∠ ∼=
MBL∠. Let F be the midpoint of the segment BM .
Let b be a perpendicular line to AK such that F lies
on b. Then TFM4 ∼= SFB4⇒ BSF∠ = π

2 .

B
S L

F

TA M K

Figure 1.3: Proof: Theorem 1.5

Definition 1.6 A quadrilateral, with two equal sides
perpendicular to the same (base) side called Saccheri
quadrilateral.

Lemma 1.7 1. AA′B′∠ ∼= BB′A′∠ < π
2

2. A′G ∼= GB′∧AF ∼= FB ⇒ FG⊥AB∧FG⊥A′B′

3. |A′B′| > |AB|

BFA

B
,

G

A
,

Figure 1.4: Proof: Lemma 1.7

Proof. BAB′4 ∼= ABA′4, because AB is common, AA′ ∼= BB′ and A′AB∠ ∼= B′BA∠ =
π
2 ⇒ AB′ ∼= A′B ∧ B′AB∠ ∼= A′BA∠ ⇒ A′AB′∠ ∼= B′BA′∠ ⇒ AA′B′4 ∼= BB′A′4 ⇒
1.
Similarly, AA′F4 ∼= BB′F4 and therefore A′FG4 ∼= B′FG4 ⇒ A′GF∠ ∼= FGB′∠ =
π
2 ⇒ 2.
Consider now the triangles A′AB4 and B′BA′4. Since B′BA′∠ + A′BA∠ = π

2 and
AA′B∠ + A′BA∠ < π

2 ⇒ AA′B∠ < B′BA∠. Using the Arm-lemma, we obtain 3.

B
,

BDFL

A
,,

A
,

ACE

M

K
,

K

Figure 1.5: Hilbert construction

2



Construction (Hilbert): Suppose that AB⊥r, KAB∠ < π
2 , (KAA′), A′B′⊥r and

|A′′B| = |AB|. Then (A′A′′B′), because ABB′A′′ is a Saccheri quadrilateral⇒ BAA′′∠ <
π
2 < BAA′∠. Let s′ be a line such that KAB∠ ∼= K ′A′′B′∠. Then s ∩ s′ 6= ∅, since
−→
BL ∩

−−→
AK = ∅ ⇒ −−→BK ‖ −−→AK and

−−−→
B′K ′ ‖

−−−→
A′′K ′, furthermore LBK∠ ∼= LB′K ′∠. Then

−−→
BK and

−−−→
B′K ′ are ultraparallel rays ⇒ s ∩ B′K ′ 6= ∅ ⇒ P . Using the Pasch axiom in

BAA′4 with B′K ′ we obtain that B′K ′ intersects either AA′ or AB. If it is AA′, then we
are done, otherwise in KBA4 we use the Pasch axiom again, but B′K ′ cannot intersect
BK ⇒ it must intersect AK. Let C be s ∩ s′ and D ∈ r b such that CD⊥r. Construct a
point E on s so that AE ∼= A′′C. Then let F ∈ r be such that EF⊥r. Then EFCD is a
Sacchery quadrilateral ⇒ the symmetry axis is good.

1.2 Line pencils and cycles

Definition 1.8 The lines pencils are set of lines:

– passing through a given (finite) point
– parallel to a given line
– perpendicular to a given line.

Definition 1.9 A cycle is the orbit of a point, reflecting it to a given line pencil:

– cycle (finite point)
– horocycle/paracycle (parallel)
– hypercycle/equidistant line (perpendicular).

Theorem 1.10 If, a cycle has three collinear points, then it is a line.

Proof. Let P ′and P ′′ be the reflections of the point
P respected to two elements of the line pencil⇒ they
are the perpendicular bisector of the the segments PP ′

and PP ′′. We have the perpendicular transverse of
these lines ⇒ ultraparallel lines ⇒ the points lie on a
hypercycle ⇒ the point lie on the base line. Figure 1.6: Proof: Theorem 1.10

Definition 1.11 Let A and B be two points on two parallel rays. We say that A and B
are corresponding points if the segment AB forms equal angles with the rays.

Lemma 1.12 Circle: Locus of point, that are equidistant from a given point.
Paracycle: Locus of points, that are corresponding to a given point, respected to a given
parallel line pencil.
Hypercycle: Locus of points, that are equidistant from a given point.
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1.3 Models of the hyperbolic geometry

1. Cayley-Klein disk model
Points: Interior of the unit disk
Lines: Chords
Axioms: I-IV trivial, since it is part of the Euclidean plane
Parallels: Chords, sharing an endpoint (boundary point)
Perpendiculars: f⊥g if and only if f goes through the intersection point of the
tangents of g.

2. Poincaré disk model /conformal disk model/
Points: Interior of the unit disk
Lines: Diameters and circular arcs, perpendicular to the model circle
Axioms: I-IV trivial, since it is part of the Euclidean plane
Parallels: Circular arcs and diameters, sharing an endpoint (boundary point)

3. Poincaré half-plane model
Points: Upper half-plane
Lines: Rays and circular arcs, perpendicular to the model circle
Axioms: I-IV trivial, since it is part of the Euclidean plane
Parallels: Circular arcs and rays, sharing an endpoint (boundary point)

Remark 1.13 Both the Poincaré disk and half-plane model are conformal models: The
angle of lines seems real size in these models.

1.3.1 Orthogonality in the Cayley-Klein model

Lemma 1.14 If, the length of the tangents, drawn
from an external point to two intersecting circles, are
equal, then the point lies on the common secant of the
circles.

Proof. Let K be the external point and |KT | =
|KR|. The ray, emanating from K through one of
the intersection point A intersects the circles in points
B and C. Using the intersecting secant theorem:
|KA||KB| = |KT |2 = |KR|2 = |KA||KC| ⇒ |KB| =
|KC| ⇒ B = C.

K

T

R

A

B

C

Figure 1.7: Proof: Lemma 1.14
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Definition 1.15 Two chords of a said to be conjugate to each other if the intersection
point of the tangent, drawn to the circle at the endpoints of one of the chords lies on the
line of the other chord.

Lemma 1.16 Two lines are orthogonal to each other
in the Cayley-Klein model if and only if the represent-
ing chords are conjugate to each other.

Proof. Let KL and K ′L′ be orthogonal lines in the
Poincaré disk model, intersecting each other at the
point P . Then |OP | = |OK ′| = |OL′|, therefore O
must lie on the common secant of the circles, deter-
mined by the points KK ′LL′ and KPL, for the pre-
vious lemma.

K

L

K'

L'

O

Figure 1.8: Proof: Lemma 1.16

1.3.2 Stereographic projection

1. Defined as the projection of the sphere from the North/South pole onto the equatorial
plane.

2. This is a bijective mapping between the unit sphere and the plane (usualy S2 →
R2/C).

3. It is equivalent with the projection from the North pole onto the tangent plane of
the South pole.

Theorem 1.17 The stereographic projection preserves circles and it is conformal.

Proof. Let P and Q be two points on the surface of the sphere, and their projections are
P ′ and Q′. Let the intersection of the line PQ and P ′Q′ be N , and S be the intersection
of the line PQ and the tangent plane of the center of the projection O. First, we prove the
PQQ′P ′ is a cyclic quadrilateral. OS is the tangent line of the triangle OQP4. Because
of the inscribed angle theorem, the supplementary angle of QOS∠ is equal to QPO∠.
Since OS ‖ Q′N , the supplementary angle of QOS∠ is also equal to OQ′P ′∠. Therefore
|NP ||NQ| = |NP ′||NQ′|.
Now let |PQ| be a chord of a circle on the sphere. Then the product |NP ||NQ| is constant
for every |PQ| chord and equal to the product |NP ′||NQ′|. This is true for every point
N , which lies on the intersection line of the projection plane and the plane, that contains
the circle. The intersection of the equatorial plane with the elliptical cone of the circle
and O is also a circle.
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Conformal: Let P be a vertex of an angle with tangent lines t1 and t2. Let ki be a
spherical circle in the plane of ti and O such that P and O lie on ki. Then the tangent of
these circles si meet at the same angle and they lie a parallel plane to the tangent plane
of O. Therefore t′1 and t′2 also meet at the same angle.

.
.

.

R

R
R

Q

P

PQ

O

e

k

e

N

S

, ,
,

,
*

P

O

k

t
t

ss

1
2

21

a

Figure 1.9: Proof: Theorem 1.17

Theorem 1.18 Consider the unit disk with the Poincaré structure. Then, the composition
of the inverse stereographic projection with orthogonal projection back to the plane of the
circle is a bijection on the disk, the ideal points are fix points and it results in the Cayley-
Klein model.

Proof. Only the lines are different in the two models. Since a line in the Poincaré disk
model is a circle, orthogonal to the great circle, the inverse stereographic projected image
is also a circle, orthogonal to the main circle. The plane of it is perpendicular to the base
plane ⇒ the orthogonal projection of the circular arc is a line segment, connecting the
endpoints of the Poincaré line (circle).
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1.3.3 Inversion

Definition 1.19 Let O be the center of a circle/sphere with radius r. The inverse image of
a point P ( 6= O) is the point P ′ if P ′ lies on the ray −→OP and |OP ||OP ′| = r2. The mapping,
that assigns the inverse image to every point of the plane/space, is called inversion.

Theorem 1.20 The image of a circle or a line by inversion is either a circle or a line.
Inversion is a conformal mapping.

Proof.

– The base circle of the inversin is fixed point by point.
– Every line, through the center of the inversion is also invariant (inside←→ outside).

– The image of a line, which does not contain O,
is a circle, through O:
Let P be the foot point of the orthogonal line
to the given line, through O and Q be an ar-
bitrary point on the given line. Let P ′ and Q′

be the inverse image of P and Q respectively.
Then |OP ||OP ′| = |OQ||OQ′| ⇒ |OP |

|OQ| = |OQ′|
|OP ′| ⇒

OP ′Q′4 ∼ OQP4 ⇒ P ′Q′O∠ = π
2 ⇒ Q′ lies

on the Thales circle above the segment OP ′ as
diameter.

– The image of a circle, which contains O is a line,
which does not contain O.

– The image of a circle, which does not contain O,
is also a circle, which does not contain O:
Let PQ be a secant line through O. Then the
product of |OP ||OQ| = p is a constant indepen-
dent from the secant. Applying a scaling from O

by ratio 1 : p, we obtain the l∗ circle with center
K∗. The secant intersects l∗ and the image of Q
is Q′. Then |OQ∗||OP | = |OQ|

p
|OP | = 1

P Q

P
,

Q
,

O

O

Q
P

Q

K

K

*

*
l
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E
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F
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M

O O

M
t

t
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e
e

1
1

1

1

1

2

2
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2
2

2
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,

O

Figure 1.10: Proof: Theorem 1.20
Conformal: Let e1 and e2 be the tangents to the curves, their intersection be M

and the image of M be M ′. Let fi be perpendicular lines to ei through O, and Oi be
the intersection points of fi by the perpendicular bisector of OM ′. Then the images
of ei by the inversion are circles with center Oi through O. Then ti⊥OiM

′, therefore
t1t2∠ ∼= O1M

′O2∠ ∼= O1OO2∠ ∼= e1e2∠.
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Remark 1.21 Applying the inversion to the Poincaré disk/sphere model at a boundary
point, we obtain the Poincaré half-plane/half-space model. We also have the advantage,
that this point is arbitrary, therefore we can choose the representative of one line/plane in
the model to be a ray/half plane. Because the Poincaré disk/sphere model is a conformal
model and inversion is a conformal mapping, the Poincaré half-plane/half-space model is
also a conformal model.

1.4 Distance and angle of space elements

1.4.1 Mutual position of space elements (E3)

The parallelism of lines is an equivalence relation (parallel line pencil). We assign an ideal
point for every equivalence class. Two line intersect each other at this ideal point, if they
are parallel in the Euclidean space. The union of ideal points forms an ideal plane.

Definition 1.22 The projective space PR3 is the union of the Euclidean space and the
ideal elements.

1. Line-Line

– intersecting: if their intersection is not ideal
– parallel: if they are not intersecting in E3 but in PR3

– skew: if they are not intersecting in PR3

2. Line-Plane/Plane-Plane

– intersecting
– parallel

1.4.2 Mutual position of space elements (H3)

1. Line-Line

– intersecting
– parallel
– ultraparallel
– skew (not intersecting in PR3)

2. Line-Plane

– intersecting
– parallel
– skew (they intersect each other either outside of the model or only in PR3)
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3. Plane-Plane

– intersecting
– parallel
– ultraparallel

1.4.3 Perpendicular transverse of non-intersecting hyperbolic space
elements

Theorem 1.23 In the hyperbolic space, there exits a unique perpendicular transverse line
for two skew lines, for two ultraparallel lines/planes.

Proof. We use the Poincaré half-plane/half-space model.

1. Ultraparallel lines (planar case)

2. Ultraparallel line-plane
Perpendicular line in the boundary plane to the
line through the center of the plane (sphere).

3. Ultraparallel planes
We draw a perpendicular line to the intersection
of the plane and the boundary plane through the
center of the sphere. We apply the previous case
for the sphere and the line, perpendicular to the
boundary plane in the given plane through the
footpoint of the previous line.

4. Skew lines
Let k be a half-sphere, perpendicular to the
boundary plane, through A,B,C ⇒ b ∈ k. FD
is the perpendicular bisector of BC ⇒ S =
AD ∩ BC. Let N be a point on b uch that
N∗ = S. Then n will be a circle perpendicu-
lar both a and b with center A and radius |AN |.
The perpendicularity to a is obvious. Let tb and
tn be the tangents of b and n in N . tb is in the
plane of BNC ⇒ tb⊥FD,NF ⇒ tb⊥ND. In
the triangle AND4 AD is the diameter of the
circumscribed circle ⇒ AND∠ = π

2 ⇒ tn =
ND ⇒ tn⊥tb ⇒ n⊥b.

a

b

n

S
1

S
2

a

b

n

O

a

b

A

B

F

C

D

t
b

t
n

n

N

M

S

Figure 1.11: Proof: Theorem 1.23
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1.4.4 Cross-ratio

Definition 1.24 Let z1, z2, z3, z4 be complex numbers. Then the cross-ratio:

(z1, z2, z3, z4) := z3 − z1

z2 − z3
: z4 − z1

z2 − z4
.

Theorem 1.25 The cross-ratio of 4 distinct points is real, if and only if they all lie either
on a circle or on a line.

Proof. We use the polar decomposition: z = reiΘ

z3 − z1

z2 − z3
: z4 − z1

z2 − z4
= z1 − z3

z2 − z3
· z4 − z2

z4 − z1
=

=
∣∣∣∣z1 − z3

z2 − z3

∣∣∣∣ eiΘ3

∣∣∣∣z1 − z4

z2 − z4

∣∣∣∣ eiΘ4 = Rei(Θ3+Θ4)

where R is a real number. ei(Θ3+Θ4) ∈ R⇔ Θ3 + Θ4 =
kπ(k ∈ Z). If Θ3 + Θ4 = 2kπ then they lie on a circle,
otherwise they lie on a line. Figure 1.12: Proof: Theorem 1.25

1.4.5 Distances in the hyperbolic space

Definition 1.26 The hyperbolic distance in the Poincaré disk model: d(X, Y ) = log(X, Y, U, V ),
where U and V are the endpoints of the line, determined by X and Y such that X, Y, U, V
is the cyclic order of the points on the representing circle.

– point-point: definition
– point-line: distance of the given point and the footpoint of the orthogonal line to
the given line through the given point

– point-plane: distance of the given point and the footpoint of the orthogonal line to
the given plane through the given point

– line-line: length of the perpendicular transverse line segment
– line-plane: length of the perpendicular transverse line segment
– plane-plane: length of the perpendicular transverse line segment
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1.4.6 Angle and distance in the Cayley-Klein model
– Angle: We follow the mapping from the Poincaré
structure to the Cayley-Klein structure:
α = (u, v)∠ = (u′, v′)∠ = V P ′U∠

|UV |2 = |P ′U |2 + |P ′V |2 − 2|P ′U ||P ′V | cos(α)
|P ′U |2 = r2

1 = u2
1 + u2

2 − 1, |P ′V |2 = r2
2 = v2

1 + v2
2 − 1

|UV |2 = (u1 − v1)2 + (u2 − v2)2 = u2
1 + u2

2 + v2
1 + v2

2 −
2u1v1 − 2u2v2

r2
1 + r2

2 − |UV |2

2r1r2
= −2 + 2u1v1 + 2u2v2

2
√

(−1 + u2
1 + u2

2)(−1 + v2
1 + v2

2)
⇒

cos(α) = −1 + u1v1 + u2v2√
(−1 + u2

1 + u2
2)(−1 + v2

1 + v2
2)

(C-K∠)

– Distance:

cosh(d(x,y)) = −1 + x1y1 + x2y2√
(−1 + x2

1 + x2
2)(−1 + y2

1 + y2
2)

Figure 1.13: Angle in the Cayley-
Klein model

1.4.7 Hyperboloid model

We use the V3 real vector space with the standard {e1, e2, e3} base. We introduce the
symmetric bilinear form: 〈e1, e1〉 = 1, 〈e2, e2〉 = 1, 〈e3, e3〉 = −1, 〈ei, ej〉 = 0, (i 6= j).
If x,y ∈ V3, then 〈x,y〉 = x1y1 + x2y2 − x3y3, and

〈x,x〉


< 0 time− like

= 0 light− like

> 0 space− like

⇒

〈x,x〉 = r2


two− sheeted hyperboloid r ∈ C

cone r = 0

one− sheeted hyperboloid r ∈ R
We define an equivalence relation: x ∼ y ⇔ ∃c ∈
R \ {0} : y = cx ⇒ representing elements: x′ ∼
(x1, x2, 1).

e

e

e

1

2

3

Figure 1.14: Hyperboloids
We assign the time-like vectors to the points of the Cayley-Klein model of the hyper-

bolic geometry by this equivalence relation.
We define the distance of two points by the d(X, Y ) = 1

2 log(X, Y, U1, U2), where U1

and U2 are the boundary points on the line of X and Y such that X, Y , U1 and U2 are in
cyclic order. Then

e2d(X,Y ) = (X, Y, U1, U2) = β1

α1
: β2

α2
where u1 = α1x + β1y, and u2 = α2x + β2y.
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〈ui, ui〉 = α2
i 〈x,x〉 + 2αiβi 〈x,x〉 + β2

i 〈y,y〉 = 0 ⇒
〈x,x〉+ 2 βi

αi
〈x,x〉+

(
βi

αi

)2
〈y,y〉 = 0

(
βi
αi

)
1,2

=
−2 〈x,y〉 ±

√
4 〈x,y〉2 − 4 〈x,x〉 〈y,y〉

2 〈y,y〉 ⇒

e2d = (x,y,u1,u2) =
〈x,y〉 −

√
〈x,y〉2 − 〈x,x〉 〈y,y〉

〈x,y〉+
√
〈x,y〉2 − 〈x,x〉 〈y,y〉︸ ︷︷ ︸

a

x

x

x

2

1

3

O

x
y

u

u1

2

Figure 1.15: Distance in the hyper-
boloid model

cosh(d(x,y)) = ed + e−d

2 =
√
a+ 1√

a

2 , but
√
a+ 1√

a
=
√

(
√
a+ 1√

a
)2 =

√
a+ 1

a
+ 2

a+ 1
a

+ 2 =
〈x,y〉 −

√
〈x,y〉2 − 〈x,x〉 〈y,y〉

〈x,y〉+
√
〈x,y〉2 − 〈x,x〉 〈y,y〉

+
〈x,y〉+

√
〈x,y〉2 − 〈x,x〉 〈y,y〉

〈x,y〉 −
√
〈x,y〉2 − 〈x,x〉 〈y,y〉

+ 2 =

=

(
〈x,y〉 −

√
〈x,y〉2 − 〈x,x〉 〈y,y〉

)2
+
(
〈x,y〉+

√
〈x,y〉2 − 〈x,x〉 〈y,y〉

)2

〈x,y〉2 −
(√
〈x,y〉2 − 〈x,x〉 〈y,y〉

)2 + 2 =

=
2 〈x,y〉2 + 2

(√
〈x,y〉2 − 〈x,x〉 〈y,y〉

)2

〈x,x〉 〈y,y〉
+ 2 = 4 〈x,y〉2 − 2 〈x,x〉 〈y,y〉

〈x,x〉 〈y,y〉
+ 2 =

= 4 〈x,y〉2

〈x,x〉 〈y,y〉
⇒ cosh

(1
2 log(X, Y, U1, U2)

)
= cosh(d(X, Y )) = −〈x,y〉√

〈x,x〉 〈y,y〉
.

1.4.8 Pole-polar relation

To represent a line u in the hyperboloid model, we consider a plane, orthogonal to
u(u1, u2, 1) through the origin: xu1 + yu2 + z = 0. Intersecting it with the plane z = 1,
we get a line with the equation xu1 + yu2 + 1 = 0.
If u2

1 + u2
2 > 1, then it can be assigned as a proper

line in the Cayley-Klein model, and X(x) lies on it, if
xu1 + yu2 + 1 = 0. The pole V (v1, v2, 1) of this line
u is the intersection of the tangents to the boundary
point of u. This is also the center of the circle, with
determines u in the Poincaré model. To get the radius
r of this circle, we apply the Pythagorean theorem:
r2 = a2 − 1 = v2

1 + v2
2 − 1. Figure 1.16: Pole-polar

Lemma 1.27 A line u(u1, u2, 1) has the pole (−u1,−u2, 1) and the point P (x, y, 1) lies
on it, if and only if p · u = 0.
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Proof. The equation of the two circles are the following:

(x− v1)2 + (y − v2)2 = v2
1 + v2

2 − 1

x2 + y2 = 1

Expanding the first equation, we can simplify it:
x2 − 2xv1 + S

Sv
2
1 + y2 − 2yv2 + S

Sv
2
2 = S

Sv
2
1 + S

Sv
2
2 − 1

x2 + y2 = 1

Finally, we get the equation of the radical line of the circles: −2xv1−2yv2 = 2⇒ −xv1−
yv2 = 1. But the radical line is our original u line with the equation xu1 + yu2 + 1 = 0,
therefore v1 = −u1 and v2 = −u2.

Remark 1.28 According to (C-K∠), the angle of two lines u(u1, u2, 1) and v(v1, v2, 1)
can be computed by their poles (−u1,−u2, 1) and (−v1,−v2, 1). With the defined bilinear
form:

−1 + (−u1)(−v1) + (−u2)(−v2)√
(−1 + (−u1)2 + (−u2)2)(−1 + (−v1)2 + (−v2)2)

= −1 + u1v1 + u2v2√
(−1 + u2

1 + u2
2)(−1 + v2

1 + v2
2)
⇒

cos(α) = 〈u,v〉√
〈u,u〉 〈v,v〉

.

1.5 Models of the Euclidean plane

– Horosphere: We consider the rays, orthogonal to the base plane in the Poincaré half-
space model. This is a parallel line pencil. The corresponding cycles are horospheres,
represented as planes, parallel to the base plane. Because this is a conformal model, the
interior angel sum of any triangle on this plane is π. The geometry on this horosphere is
Euclidean.

Theorem 1.29 Any two horosphere are congruent to each other.

– Hypercycle: Let O be a point on the Euclidean plane and K be a center of a unit
ball, tangent to the plane at O. We consider a unit disk, such that its plane is parallel
to the base plane, through K, as the Cayley-Klein
model of the hyperbolic plane. The points of the
model are the points of the unit disk, and the lines are
the lines, through K and the corresponding hypercy-
cles, represented as ellipses. We project this elliptic
arc orthogonally onto the sphere (we get a great arc).
Then we project it back to the base plane through K.

P

T

K

O

(P)

Figure 1.17: Hypercycle model

With the d(A,B) := |T (A)T (B)| metric, the congruence axioms will be true, and the Eu-
clidean axiom of parallelism is obviously ture.
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1.6 Area on the hyperbolic plane

Definition 1.30 A triangle is called asymptotic/doubly asymptotic/triply asymptotic, if
one/two/three vertex/vertices is/are boundary point(s).

Theorem 1.31 All the triply asymptotic triangles are congruent to each other.

Definition 1.32 Area is an isometry-invariante, non-negative, additive set function for
simply polygons and T (= π) is assigned to the triply asymptotic triangle.

Theorem 1.33 Any asymptotic triangle can be cur off into a pentagon.

Proof. (Poincaré disk-model): Let ABC4 be such
that C is the ideal point and A is the center of the
disk. Let D be an ideal point such that (ABD), and
M be the footpoint of the perpendicular line to CD
through A. Let A1 be the reflection of B in the line
AM and the intersection of BC and A1D be M1. Let
the footpoints of the perpendicular line toDC through
B and A1 be Q and P respectively. If the reflection of
BC in A1P is DA2, then the triangle M2A1A24/4/ is
congruent to A1M1M24/3/ and M1M2B4. Continu-
ing this process, we get ABQPA1 pentagon.

C

B

A

M

D

A

AB

PQ

1

21

M1

M
2

1 2

34 4

Figure 1.18: Lindberg method

Theorem 1.34 If, the vertex angle of a doubly asymptotic triangle is α, then the area of
it is c(π − α) /c ∈ R+/.

Proof. Let f(φ) be the area, if φ = π − α is the supplementary angle. The union of the
two corresponding doubly asymptotic triangle is a triply asymptotic triangle (see Figure
1.19), therefore: f(φ) + f(π − φ) = T .

f

f

f
f

f
f

f

p-

p-

A

f( f() )

N M

N

M

f( )

L

A

Figure 1.19: f(φ) is additive
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Figure 1.20 shows us, that T = f(φ) + f(ϕ) + f(π − φ− ϕ)⇒ f(φ) + f(ϕ) = f(φ+ ϕ)

L M

N

p+y

p-y p-f

A

C

B

Figure 1.20: Area and defect

Our only solution is f(x) = λx, since f is monotonously increasing and f(1) = λ ⇒
f(n) = nλ. Now, if k

n
≤ x ≤ k+1

n
⇒ k ≤ nx ≤ k + 1 ⇒ kλ ≤ nf(x) ≤ (k + 1)λ ⇒ k

n
≤

f(x)
λ
≤ k+1

n
⇒
∣∣∣x− f(x)

λ

∣∣∣ ≤ 1
n
∀n⇒ f(x) = λx.

Remark 1.35 Because the triply asymptotic triangle is T ⇒ λ = T
π
. Therefore, we choose

the value of T be π.

Theorem 1.36 The area of any hyperbolic triangle is its defect.

Proof. We make up the ABC4 to a triply asymptotic triangle by expanding the sides
cyclically (see Figure 1.20). The area of the three extra doubly asymptotic triangles are
α, β and γ respectively. Therefore, the area can be expressed from the formula:

π = A(ABC) + α + β + γ ⇒ A(ABC) = π − (α + β + γ) = δ.
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