
Absolute geometry

1.1 Axiom system

We will follow the axiom system of Hilbert, given in 1899. The base of it are primitive
terms and primitive relations. We will divide the axioms into five parts:

1. Incidence
2. Order
3. Congruence
4. Continuity
5. Parallels

1.1.1 Incidence

Primitive terms: point, line, plane
Primitive relation: "lies on"(containment)

Axiom I1 For every two points there exists exactly one line that contains them both.

Axiom I2 For every three points, not lying on the same line, there exists exactly one
plane that contains all of them.

Axiom I3 If two points of a line lie in a plane, then every point of the line lies in the
plane.

Axiom I4 If two planes have a point in common, then they have another point in com-
mon.

Axiom I5 There exists four points not lying in a plane.

Remark 1.1 The incidence structure does not imply that we have infinitely many points.
We may consider 4 points {A,B,C,D}. Then, the lines can be the two-element subsets
and the planes the three-element subsets.
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1.1.2 Order

Primitive relation: "betweeness"
Notion: If A, B, C are points of a line then (ABC) := B means the "B is between A

and C".

Axiom O1 If (ABC) then (CBA).

Axiom O2 If A and B are two points of a line, there exists at least one point C on the
line AB such that (ABC).

Axiom O3 Of any three points situated on a line, there is no more than one which lies
between the other two.

Axiom O4 (Pasch) Let A, B, C be three points not lying on the same line and let e be
a line lying in the plane ABC and not passing through any of the points A, B, C. Then,
if the line e passes trough a point D such that (ADB), it will also pass trough a point E
such that either (BEC) or (AEC).

Remark 1.2 The first three order axioms do not implies that the line has infinitely many
points. Let a model of the line be the edge of a regular pentagon. We define the betweeness
such that (XY Z) if and only if the triangle of X, Y , and Z is an isosceles triangle with
Y as edge vertex.

Lemma 1.3 In the Pasch axiom, either (BEC) or (AEC) but not both at once.

Proof. Indirect: (AEC) ∧ (BFC)⇒ (DEF )

A

B C

D
E

F

Figure 1.1: Proof: Lemma 1.3

We consider the Pasch axiom for the non-collinear points D, B, F and the line of AC
(see Figure 1.1). Therefore either (BAD) or (BCF ), but we supposed in the axiom that
(ADB) and in the indirect assumption that (BFC).

Definition 1.4 Let A and B be two points. The segment AB consists of those points of
C, for which (ACB).
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Lemma 1.5 Any segment has a point.

Proof.

1. C is not on the line of AB
2. Let D be such that (ACD) (see Axiom O2)
3. Let E be such that (DBE) (see Axiom O2)
4. We use the Pasch axiom for the points A, D, B

and the line CE ⇒ ∃F : (AFB)

A

C

D

B

E

F

Figure 1.2: Proof: Lemma 1.5

Corollary 1.6 We can define polygonal chain, polygon, half-plane, ray, angle and con-
vexity.

Theorem 1.7 (Jordan) Any simple, closed polygon splits the plane into two parts. One
of the parts does not contain rays t this is called the inside of the polygon.

1.1.3 Congruence

Primitive relation: "congruence of segments and angles"

Axiom C1 The congruence of segments and angles are equivalence relation.

Axiom C2 Every segment can be laid off upon a given side of a given point of a given
line.

Axiom C3 Let AB and BC be two segments of a line which have no points in common
aside from B and let A′B′ and B′C ′ be two segments of the same or of another line,
likwise no point other than B′ in common. Then, if AB ∼= A′B′ and BC ∼= B′C ′, we have
AC ∼= A′C ′.

Axiom C4 An angle congruent to a given angle can be added to a given ray of a given
line of a given plane in both half-planes determined by the given line.

Axiom C5 If, in two triangles ABC and A′B′C ′ the congruences AB ∼= A′B′, AC ∼= A′C ′

and BAC∠ ∼= B′A′C ′∠ hold, then the congruence BC ∼= B′C ′ also holds.

Remark 1.8 With congruence we can

– compare segments and angles.
– introduce "length" like an additive non-negative, real function.
– introduce right angle like an angle divides the plane into four congruent parts.
– use the Descartes coordinate system with analytic geometry.
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1.1.4 Continuity

Axiom 1.9 (Archimedes) If AB and CD are any segments then there exists an integer
number n such that n segments CnDn constructed contiguously from A, along the ray from
A through B, will pass beyond the point B.

Axiom 1.10 (Cantor) If PiQi i = 1 . . .∞ are closed segments of a line such that PiQi ⊇
PjQj if j > i, then ⋂∞

i=1 PiQi 6= ∅.

Axiom 1.11 (Dedekind) For every partition of all the points on a line into two nonempty
sets such that no point of either lies between two points of the other, there is a point of
one set which lies between every other point of that set and every point of the other set.

Theorem 1.12 The Axioms 1.9 and 1.10 are equivalent with the Axiom 1.11.

Proof. Only (D)⇒ (C)
Let A := {S ∈ e|∃i(SPiQi)} and B := {T ∈ e|∃i(PiQiT )}. Using the axiom, we get a
point C such that ∀S ∈ A and ∀T ∈ B : (SCT )⇒ (∀i : C ∈ PiQi).

Remark 1.13 Rational number line satisfies (A) but not (C).
Question: Exists such model of the line that satisfies
incidence, order and congruence but not (A)?
Answer: YES (Veronese)
We introduce ordering as follows:
(x1, y1) > (x2, y2)⇐⇒ y1 > y2 ∨ ((y1 = y2) ∧ x1 > x2)
A point (x′, y′) is between (x1, y1) and (x2, y2) if and
only if either (x1, y1) < (x′, y′) < (x2, y2) or (x1, y1) >
(x′, y′) > (x2, y2).

Remark 1.14 This model do not satisfies (C), e.g.
Pi := (n, 0), Qi := (−n, 1).

(0,0)

(0,1)

(1,0)O= =L

K=

Figure 1.3: Non-Archimedean line
model

1.1.5 Parallels

Axiom 1.15 (EUC) Let a be any line and A a point not on it. Then, there is exactly
one line in the plane, determined by a and A, that passes through A and does not intersect
a.

Axiom 1.16 (HYP) Let a be any line and A a point not on it. Then, there are at least
two lines in the plane, determined by a and A, that pass through A and do not intersect a.
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1.2 Absolute theorems

Lemma 1.17 If we connect the points A and B which
lie on different rays of an angle, then inside rays em-
anating from its vertex O intersect the segment AB.

Proof. Let C be such that (AOC) /Axiom O2/. We
apply the Pasch axiom for the points A, B, C and the
ray.

B

AOC

Figure 1.4: Proof: Lemma 1.17

Lemma 1.18 (External angle) Any external angle
of a triangle is larger than its any internal angle not
beside it.

Proof. Indirect CAB∠ > CBD∠ where D is such
that (ABD).
We lay off the CBD∠ upon the CAB∠ ⇒ M by
using 1.17 lemma. Let M ′ be such that (CBM ′)
and BM ∼= M ′B. Then ABM ′∠ = MBD∠ =
MAB∠ ⇒ ABM ′4 ∼= BAM4. Therefore
M ′AB∠ ∼= ABM∠ ⇒ M , A, M ′ are collinear and
A=B.

A B

C
M

M
,

Figure 1.5: Proof: Lemma 1.18
Remark 1.19 If two lines intersect another line at the same angle, then they cannot
intersect each other. ⇒ Exist non-intersecting lines in absolute geometry.
Lemma 1.20 If, in two triangles ABC4 and
A′B′C ′4 the congruences AB ∼= A′B′, ACB∠ ∼=
A′C ′B′∠ and either ABC∠ ∼= A′B′C ′∠ or BAC∠ ∼=
B′A′C ′∠ hold, then the triangles are congruent.

Proof. Let e.g. ABC∠ ∼= A′B′C ′∠ be true. Let C∗

be on B′C ′ such that BC∗ ∼= B′C ′. Then ABC∗4 ∼=
A′B′C ′4 /Axiom C5/, therefore AC∗B∠ ∼= A′C ′B′∠

and the previous remark implies that C ′ = C∗.

A
,

B
,

C
,

C*

Figure 1.6: Proof: Lemma 1.20

Lemma 1.21 In any triangle, the greater angle is
subtended by the greater side and the greater side sub-
tends the greater angle.

Proof. Suppose that AC < BC. Let A′ be such that
AC ∼= A′C and (CA′B). C lies on the bisector of AA′.
Therefore CAA′∠ ∼= CA′A∠. Using the external angle
lemma, we obtain that CA′A∠ > CBA∠.

BA
,a

b

b

C

A

Figure 1.7: Proof: Lemma 1.22
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Lemma 1.22 For any triangle, the sum of the length
of any two sides must be greater than the length of the
remaining side.

Proof. Let D be such that (BCD) and CD ∼= AC.
Then ACD4 is isosceles, therefore CDA∠ ∼= CAD∠.
But BAD∠ > CAD∠ and using the previous lemma,
we obtain that |BD| > |BA|.

AB

C

D

c

b

b

a

Figure 1.8: Proof: Lemma 1.22

Corollary 1.23 (Polygonal chain inequality) Let A1, A2, . . . , An be a polygonal chain.
Then ∑n−1

i=1 |AiAi+1| ≥ |A1An|.

Lemma 1.24 (Arm-lemma) If, in two triangle
ABC4 and A′B′C ′4 the congruences AB ∼= A′B′,
BC ∼= B′C ′ hold and ABC∠ < A′B′C ′∠, then |AC| <
|A′C ′|.

Proof. We may assume that A = A′ and B = B′ Due
to the lemma 1.17, the line BC intersects AC ′ and we
obtain D.
1. case: (BDC): AC ′C∠ < BC ′C∠ ∼= BCC ′∠ <

ACC ′∠. Therefore using the triangle inequality for
the triangle ACC ′4 we obtain that |AC| < |A′C ′|.
2. case: (BCD): In any isosceles triangle, the base
angle is smaller then π

2 , since the sum of the two base
angle is smaller then the straight angle /External angle
lemma/. In our case BCC ′∠ < π

2 ⇒ C ′CD∠ > π
2 ⇒

|C ′D| > |CD|. Using the triangle inequality and, we
obtain that: |AC| < |AD| + |DC| < |AD| + |DC ′| =
|AC ′|.

Figure 1.9: Proof: Lemma 1.24

Theorem 1.25 (Legendre I.) For any triangle, the sum of its internal angles must be
less than or equal to π.

Proof. Indirect The internal angle sum in ABC4 is greater than π.
Let |AiAi+1| = |AB| be contiguous segments on the line of AB and Ci be such that
AiCiAi+14 ∼= ACB4. Due to our indirect assumption ∀i = 0, 1, . . . , n− 1 : AiCiAi+1∠ >

CiAi+1Ci+1∠. Applying the Arm-lemma: |A0A1| = |AiAi+1| > |CiCi+1| = |C0C1|. Now,
ordering the polygonal chain inequality |A0C0| + |C0C1| + . . . |Cn−1An| > n|A0A1|, we
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C

Figure 1.10: Proof: Theorem 1.25

obtain that n(|A0A1| − |C0C1|) < |A0C0| + |Cn−1An| which contradicts the Archimedean
axiom.

Definition 1.26 The defect of a triangle is the difference between π and the internal angle
sum of the given triangle (additive, non-negative).

Theorem 1.27 (External angle theorem) Any
external angle of a triangle is larger than or equal to
the sum of the other two internal angles.

Proof. Let D be such that (ABD). In the triangle
ABC4: π ≥ CAB∠ + ABC∠ + ACB∠. Therefore,
DBC∠ = π − ABC∠ ≥ CAB∠ + ACB∠.

A B D

C

Figure 1.11: Proof: Theorem 1.27

Theorem 1.28 (Legendre II.) If, the defect of a triangle is 0, then the defect of any
triangle is 0.

Proof. Assuming, that the defect of ABC4 is 0, we can divide it into two right angled

A
,

B
,

C
,A B

C

Figure 1.12: Proof: Theorem 1.28

triangle with defect 0. Joining two, we get a rectangle with defect 0. For any triangle
A′B′C ′4, there exists a rectangle, which contains the triangle /Archimedean axiom/. We
may divide the rectangle into five triangles. Since the defect is additive and non-negative,
the defect of A′B′C ′4 must be 0.

Remark 1.29 For any non self intersecting polygon, we can define the defect, by dividing
it into n− 2 triangles.
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Theorem 1.30 The defect of a triangle is 0 ⇐⇒
(EUC) is true.

Proof. Let a be a line and P be a point not on it.
Let PT be perpendicular to a (T is on a) and PK

be perpendicular to PT . Then, for the Remark 1.19,
PK ∩ a = ∅.
⇒ Indirect: Let f be such a ray in TPK∠ that
F ∩ a = ∅.
We will find a point D, such that DPK∠ < fPK∠.
If, we define the points Di such that D1 = B and
|PDi| = |DiDi+1|, then we get for the angle DDiT∠ =

1
2i−1DD1T∠. Now, f is a ray in BPD4 triangle,
therefore Lemma 1.17 guarantees the intersection.
⇐ Let a be the line of AB and C = P . Furthermore,
let KCB∠ = CBA∠ and LCA∠ = CAB∠. Then −→CL
and −−→CK are such rays, that they do not intersect a
⇒ they belong to the same line and the defect of the
triangle is 0.

A T B Da

f

KP

....

P

T D D
31 2

2 2 2

D

PD
1
=D

1
D , PD =D D

3

A B

a

KL C=P

Figure 1.13: Proof: Theorem 1.30

1.3 Orthogonality

Definition 1.31 Two lines are orthogonal to each other if they divide the plane into four
congruent parts.

Definition 1.32 A line intersecting a plane is orthogonal to the plane, if it is orthogonal
to all the lines, passing through the intersection point.

Theorem 1.33 A line intersecting a plane is orthogonal to the plane, if it is orthogonal
to two lines, passing through the intersection point.

Proof. Let a and b be two intersecting lines on a plane and D be their intersection point.
Let n be orthogonal to both a and b such that D lies on n. Furthermore, let c be a line in
the plane, passing through the point D. There exist always points A ∈ a and B ∈ b such
that c intersects the segment AB ⇒ C. Let P ′ be a point on n such that |PD| = |P ′D|.
Then PDA4 ∼= P ′DA4 and PDB4 ∼= P ′DB4, since |PD| = |P ′D|, they have a side
in common and the angles between them is π

2 .

8



Therefore |PA| = |P ′A| and |PB| = |P ′B|. But then
PAB4 ∼= P ′AB4 ⇒ PAC∠ ∼= P ′AC∠⇒ PAC4 ∼=
P ′AC4 ⇒ |PC| = |P ′C| ⇒ PDC4 ∼= P ′DC4 ⇒
PDC∠ ∼= P ′DC∠ = π

2 .

Corollary 1.34 In the space, the equidistant surface
of two point is the orthogonal plane at the midpoint of
them.

Corollary 1.35 The locus of lines, orthogonal to a
given line at a given point of it is a plane, orthogonal
to the line at that point.

D

a
b

B

A

P
,

P

C

n

Figure 1.14: Proof: Theorem 1.33

Theorem 1.36 Through a given point A exactly one line can be drawn perpendicularly to
a given plane α.

Proof. 1. case: A does not lie on α
Let a be an arbitrary line on α and T be a point on
a such that AT⊥a. First, we draw an orthogonal line
to a through T in α, then an orthogonal line to this
line through A with foot point D. Let A′ be a point
on the line of AD such that |AD| = |A′D| and S

be an arbitrary point on a. A′T⊥a, since a is per-
pendicular to the plane of ADT . Then ADT4 ∼=
A′DT4 ⇒ |AT | = |A′T | ⇒ ATS4 ∼= A′TS4 ⇒
|AS| = |A′S| ⇒ ADS4 ∼= A′DS4⇒ AA′⊥DS
2. case: A lies on α
Our only solution will be the intersection line of the
planes, perpendicular to two arbitrary lines, passing
through the point A.

a

A

T

S

D

A
,

Figure 1.15: Proof: Theorem 1.36

Theorem 1.37 (of three perpendiculars) Let a be a line on a given plane and A be
a point not lying in the plane. The the foot points T and D of the perpendiculars from A

to a and α respectively form a perpendicular line to a.

Proof. Let S and R be equidistant points on a

from T . Then TAS4 ∼= TAR4, therefore |AS| =
|AR|. But this implies that ADS4 ∼= ADR4 ⇒
|DS| = |DR|. Now DSR4 is an isosceles triangle
and DT⊥SR.

A

D

R

T

S
a

Figure 1.16: Proof: Theorem 1.37
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Definition 1.38 The orthogonal projection of a point of the space for a given plane is the
common point of the plane and the line, perpendicular to the plane through the point. The
orthogonal projection of a point set is the set of the projected points.

Definition 1.39 A mapping is a collineation if the image of collinear points are collinear
themselves.

Theorem 1.40 The orthogonal projection is a collineation and it preserves incidence.

Proof. Let A and B be two points on a line and their projection be A′ and B′ respectively.
Then A, A′, B and B′ are coplanar.
Indirect: Let the line e be in the plane, perpendicular to A′B′ through A′ and F be
the midpoint of the segment A′B′. Reflecting the lines AA′, A′B′ and e respected to F ,
we obtain the lines B′C, A′B′ and f respectively. Since the orthogonal line to the plane
through a given point is unique, B is on the line B′C.
Now, let A, B and C be collinear points. Then the points A, A′, B, B′ and A, A′, C, C ′

are coplanar ⇒ the two plane are the same ⇒ A′, B′ and C ′ are collinear points.

A

BA ,
,

,,

,

f
e

B C

A

A

B

B

C

C

Figure 1.17: Proof: Theorem 1.40

Definition 1.41 Two planes are orthogonal to each other if one of them contains a line,
perpendicular to the other.

Theorem 1.42 For every plane and line, there always exists a plane, which is orthogonal
to the given plane and contains the given line.

Proof. If the orthogonal projection of the line is a single point, then it is orthogonal to
the plane, and any plane which contains the line will be appropriate.
If the orthogonal projection of the line is a line does not coincide with the original line,
then they determine this orthogonal plane.
If the orthogonal projection of the line is a line coincides with the original line, then
construct a perpendicular line to the given line in the given plane at any point if it. The
orthogonal plane to the constructed line through this point will satisfy the conditions.
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