Geometry 1e - Practice

8th class - 4.11.2025.

- 1. Determine the equation of the line in the space through $P_0(x_0, y_0, z_0)$ in the direction of $\mathbf{v}(v_x, v_y, v_z)$. /Parametric and equation system form/
- 2. Give the equation of the line l, if
 - a. A(-2,5,6) and B(7,-1,3) lies on it,
 - b. P(3,-1,5) lies on it and it is parallel to the y axis,
 - c. P(-3,7,5) lies on it and it is parallel to the xy coordinate plane,
 - d. P(3,-1,2) lies on it and parallel to $\frac{x-8}{2} = \frac{y}{3} = \frac{z+9}{7}$.
- 3. Determine the mutual position of the lines:
 - a. $\frac{x+2}{3} = \frac{y-1}{-2} = z$ and x = 5 + 6t, y = -4, z = 7 + 2t,
 - b. x = 2t, y = 13 + 5t, z = -13 7t and x = 2t 2, y = 2 t, z = 4 + 3t,
 - c. x = t, y = -1 + 2t, z = 1 + t and x = 5 + 25, y = -t, z = 3 2t.
- 4. Determine the value of a, if lines $\frac{x+2}{2} = -\frac{y}{3} = \frac{z-1}{4}$ and $\frac{x-3}{a} = \frac{y-1}{4} = \frac{z-7}{2}$ are intersecting.
- 5. Evaluate the angle of lines $x-3=-y-2=\frac{z}{\sqrt{2}}$ and $x+2=y-3=\frac{z+5}{\sqrt{2}}$.
- 6. Give the distance of P(2,4,-6) to the line $\frac{x-2}{6} = \frac{y+1}{9} = \frac{z}{2}$.
- 7. Prove that x = 2 + 3t, y = -1 + 4t, z = 2t and x = 7 + 3t, y = 1 + 4t, z = 3 + 2t are parallel leines. What is their distance?
- 8. Reflect P(-1,2,3) in $\frac{x+1}{3} = y = z$.
- 9. Give the equation of the line l, if its projection to xy is x-2y=15 and to yz is 3y-z=10.
- 10. Determine the distance and angle of $\frac{x+2}{4} = -\frac{y+1}{3} = \frac{2z-14}{18}$ and the z axis.