Geometry 1e - Practice

9th class - 11.11.2025.

- 1. Determine the equation of the plane in the space through $P_0(x_0, y_0, z_0)$, orthogonal the direction of $\mathbf{n}(n_x, n_y, n_z)$.
- 2. Give the equation of the plane α , if
 - a. P(3,2,-1) lies on it, and it is parallel to the xy, xz, yz coordinate plane,
 - b. the xy, xz, yz coordinate plane,
 - c. P(2,3,5) and Q(-1,4,3) lie on it and it is orthogonal to the xy coordinate plane,
 - d. A(3,-1,2), B(4,-1,-1) and C(2,0,2) lie on it,
 - e. O(0,0,0) lies on it and parallel to $\frac{x-3}{2} = y + 7 = z$,
 - f. it intersects the x, y, z coordinate axis in 4, -3,2, respectively,
 - g. R(-1,5,7) lies on it at is is parallel to the lines e: x = 5 2t, y = t, z = -1 + 3t and f: x = 7 + 9t, y = 3, z = -t,
 - h. it is the perpendicular bisector of points A(-3,7,6) and B(1,-5,0),
 - i. it is the angular bisector of planes x 3y + 2z = 5 and 3x 2y z + 3 = 0.
- 3. Determine the distance of a point P(x,y,z) to the plane α , that is passing through $P_0(x_0,y_0,z_0)$ with normal $\mathbf{n}(n_x,n_y,n_z)$.
- 4. Determine the distance of
 - a. P(-2, -4,3) to 2x y + 2z + 3 = 0,
 - b. Q(1,2,-3) to 5x 3y + z 1 = 0,
 - c. $-x \sqrt{2}y + z 1 = 0$ and $x + \sqrt{2}y 7 + 3 = 0$.
- 5. Give the angle of x + 2y + 6z 12 = 0 and 6x + 3y 2z = 0.