
Matematika szigorlat G – 2025. június 5.

Elmélet (10× 3 = 30 pont)

1. Hogyan lehet kiszámítani két trigonometrikus alakban adott komplex szám hányadosát?
Megoldás. Ha z1 = r1(cosϕ1 + i sinϕ1) és z2 = r2(cosϕ2 + i sinϕ2), akkor z1

z2
= r1

r2
(cos(ϕ1−ϕ2) + i sin(ϕ1−

ϕ2)).
2. Mondja ki a Bolzano-tételt.

Megoldás. Ha f : [a, b] → R folytonos függvény, akkor minden y ∈ [f(a), f(b)]-hez létezik x ∈ [a, b], amire
f(x) = y.

3. Definiálja egy f : [0,∞)→ R függvény 0 és ∞ közötti improprius integrálját.

Megoldás. Ha f Riemann-integrálható minden [0, b] intervallumon, ahol 0 ≤ b, és létezik a limb→∞
∫ b

0 f(x) dx
határérték, akkor ezt a határértéket az f függvény 0 és ∞ közötti improprius integráljának nevezzük.

4. Mondja ki a pozitív tagú numerikus sorokra vonatkozó minoránskritériumot.
Megoldás. Ha

∑∞
n=0 an =∞ és ∀n ∈ N : an ≤ bn, akkor

∑∞
n=0 bn =∞.

5. Mikor van az Ax = b lineáris egyenletrendszernek 0, 1 illetve végtelen sok megoldása? Adjon feltételt az
együtthatómátrix és a kibővített mátrix rangja segítségével.
Megoldás. Akkor létezik megoldás, ha az együtthatómátrix és a kibővített mátrix rangja megegyezik. A
megoldás akkor egyértelmű, ha ez a közös rang megegyezik az ismeretlenek számával.

6. Definiálja az f : Rn → R függvény iránymenti deriváltjának fogalmát.
Megoldás. Ha e ∈ Rn egységvektor, akkor f e irányú deriváltjának az r0 pontban a t 7→ f(r0 + te) függvény
0-beli deriváltját nevezzük.

7. Hogyan lehet kiszámítani az r : [a, b]→ R3 differenciálható függvénnyel megadott térgörbe ívhosszát?

Megoldás.
∫ b

a

|ṙ(t)|dt.

8. Mondja ki a Stokes-tételt.
Megoldás. Legyen S irányított felület, pereme a jobbkéz-szabály szerint irányítva ∂S, és legyen u (legalább
S egy környezetében) folytonosan differenciálható vektormező. Ekkor

∫
∂S

u · dr =
∫∫

S

rot u · dA.

9. Mondja ki a Cauchy–Peano-féle egzisztenciatételt.
Megoldás. Ha D ⊆ R× Rn és f : D → Rn folytonos, akkor az y′ = f(x,y) differenciálegyenletnek bármely
(x0,y0) ∈ D esetén létezik az y(x0) = y0 kezdeti feltételt kielégítő lokális megoldása.

10. Mit értünk egzakt differenciálegyenlet alatt?
Megoldás. Egy P (x, y) +Q(x, y)y′ = 0 alakú differenciálegyenlet egzakt D ⊆ R2-en, ha létezik u : D → R,
amire P (x, y) = ∂

∂xu(x, y) és Q(x, y) = ∂
∂yu(x, y) teljesül. (Lokálisan ezzel ekvivalens: P ′y = Q′x.)



Feladatok (7× 10 = 70 pont)

1. Számítsa ki az alábbi sorozatok határértékét.

an =
√
n sin

(√
n+ 1−

√
n
)

bn = e
√
n + (

√
n)e

n2 + 2n

Megoldás.

lim
n→∞

an = lim
n→∞

√
n sin

(√
n+ 1−

√
n
)

= lim
n→∞

√
n sin

(
1√

n+ 1 +
√
n

)

= lim
n→∞

√
n√

n+ 1 +
√
n

sin
(

1√
n+1+

√
n

)
1√

n+1+
√
n

= 1
2 ,

az utolsó lépésben felhasználva a limx→0
sin x
x = 1 nevezetes határértéket.

lim
n→∞

bn = lim
n→∞

e
√
n + (

√
n)e

n2 + 2n

= lim
n→∞

e
√
n

2n
1 + (

√
n)ee−

√
n

n22−n + 1 = 0,

mivel az első hányados határértéke 0, a másodiké pedig 1.
2. Végezze el az f(x) = x

√
1− x2 függvény teljes függvényvizsgálatát.

Megoldás. Df = [−1, 1], páros, nem páratlan, nem periodikus, zérushelye x = 0 és x = ±1. A deriváltak

f ′(x) =
√

1− x2 − x2
√

1− x2
= 1− 2x2
√

1− x2

f ′′(x) =
−4x
√

1− x2 − (1− 2x2)
(
− x√

1−x2

)
1− x2

= x(x2 − 3)
(1− x2)3/2 .

Az első derivált zérushelyei x = ± 1√
2 , a második derivált zérushelye x = 0. Az előjelek:

(−1,− 1√
2 ) − 1√

2 (− 1√
2 , 0) 0 (0, 1√

2 ) 1√
2 ( 1√

2 , 1)
f min infl max
f ′ − 0 + + + 0 −
f ′′ + + + 0 − − −

Nincs aszimptota. Rf = [− 1
2 ,

1
2 ], grafikon:

−1 1

− 1
2

1
2

3. Határozza meg a
∞∑
n=1

n2xn sor összegfüggvényét.



Megoldás.

x
d

dx

(
x

d
dx

1
1− x

)
= x

d
dx

(
x

d
dx

∞∑
n=0

xn

)

= x
d

dx

(
x

∞∑
n=0

nxn−1

)

= x
d

dx

∞∑
n=0

nxn

= x

∞∑
n=0

n2xn−1

=
∞∑
n=0

n2xn,

tehát
∞∑
n=0

n2xn = x
d

dx

(
x

d
dx

1
1− x

)
= x

d
dx

x

(1− x)2

= x
(1− x)2 + 2x(1− x)

(1− x)4

= x(1 + x)
(1− x)3 .

4. Számítsa ki az
∫ 1

0

∫ 1

y

y2e−x
4

dx dy integrált.

Megoldás. Felcseréljük az integrálás sorrendjét:

T =
{

(x, y) ∈ R2∣∣0 ≤ y ≤ 1, y ≤ x ≤ 1
}

= {(x, y) ∈ R|0 ≤ x ≤ 1, 0 ≤ y ≤ x} ,

tehát ∫ 1

0

∫ 1

y

y2e−x
4

dx dy =
∫ 1

0

∫ x

0
y2e−x

4
dy dx

=
∫ 1

0

x3

3 e
−x4

dx

=
[
−e
−x4

12

]1

0

= e− 1
12e .

5. Integrálja az u(x, y, z) = −yzi + xzj + k vektormezőt az r(t) = cos ti + sin tj + etk görbe t ∈ [0, 1] paramé-
terértékeknek megfelelő darabján.
Megoldás. A derivált ṙ(t) = − sin ti + cos tj + etk, a vektormező értéke a görbén

u(r(t)) = −et sin ti + et cos tj + k.

A görbementi integrál∫
u · dr =

∫ 1

0
u(r(t)) · ṙ(t) dt

=
∫ 1

0

(
−et sin ti + et cos tj + k

)
·
(
− sin ti + cos tj + etk

)
dt

=
∫ 1

0

(
et sin2 t+ et cos2 t+ e2)dt

= 2
∫ 1

0
et dt

= 2
[
et
]1

0 = 2(e− 1).



6. Oldja meg a√
1− x2y′ = xy

differenciálegyenletet y(0) = 1 kezdeti feltétel mellett.
Megoldás. Az egyenlet szétválasztató:

y′

y
= x√

1− x2
,

mindkét oldalt integráljuk.∫ x

0

y′(ξ)
y(ξ) dξ = ln(y(x))− ln(y(0)) = ln(y(x)),

és ∫ x

0

ξ√
1− ξ2

dξ =
[
−
√

1− ξ2
]x
ξ=0

= −
√

1− x2 + 1,

tehát

y(x) = e1−
√

1−x2
.

7. Határozza meg az y′′ + 3y′ + 2y = e−x differenciálegyenlet általános megoldását.
Megoldás. Az egyenlet inhomogén állandó együtthatós lineáris, először a hozzá tartozó homogén egyenletet
oldjuk meg. A karakterisztikus polinom λ2 + 3λ+ 2 = (λ+ 1)(λ+ 2), tehát a gyökök −1 és −2. A homogén
egyenlet általános megoldása Ae−x +Be−2x.
Az inhomogén tag exponenciális, külső rezonancia van, az inhomogén egyenlet egy megoldását kereshetjük
y(x) = Cxe−x alakban. A deriváltak

y′(x) = Ce−x − Cxe−x

y′′(x) = −2Ce−x + Cxe−x,

az egyenletbe behelyettesítve

−2Ce−x + Cxe−x + 3(Ce−x − Cxe−x) + 2Cxe−x = Ce−x = e−x

adódik, ez akkor teljesül minden x-re, ha C = 1, tehát az inhomogén egyenlet általános megoldása y(x) =
xe−x +Ae−x +Be−2x.


