
Matematika szigorlat G – 2025. június 12.

Elmélet (10× 3 = 30 pont)

1. Hogyan lehet kiszámítani két trigonometrikus alakban adott komplex szám szorzatát?
Megoldás. Ha z1 = r1(cosϕ1 + i sinϕ1) és z2 = r2(cosϕ2 + i sinϕ2), akkor z1z2 = r1r2(cos(ϕ1 + ϕ2) +
i sin(ϕ1 + ϕ2)).

2. Milyen q ∈ R esetén konvergens az an = aqn mértani sorozat? Mi a határértéke?
Megoldás. A konvergencia feltétele −1 < q ≤ 1. Ha |q| < 1, akkor a határérték 0, ha q = 1, akkor pedig a.

3. Mondja ki a Bolzano-tételt.
Megoldás. Ha f : [a, b] → R folytonos függvény, akkor minden y ∈ [f(a), f(b)]-hez létezik x ∈ [a, b], amire
f(x) = y.

4. Hogyan írható fel egy T szerint periodikus f : R→ R függvény Fourier-sora, és hogyan lehet kiszámolni az
együtthatóit?
Megoldás. a0 +

∑∞
n=1

(
an cos 2πn

T x+ bn sin 2πn
T x

)
, ahol

a0 = 1
T

∫ T

0
f(x) dx

an = 2
T

∫ T

0
f(x) cos 2πn

T
x dx

bn = 2
T

∫ T

0
f(x) sin 2πn

T
x dx

5. Adja meg a vektoriális szorzat geometriai definícióját és koordinátákkal adott vektorok vektoriális szorza-
tának kiszámítási módját.
Megoldás. Az a és b vektorok vektoriális szorzata az az a×b-vel jelölt vektor, amelynek hossza |a||b| sin γ,
ahol γ a két vektor által bezárt szög, merőleges az a és b vektorokra, és a,b,a × b ebben a sorrendben
jobbrendszert alkot. Ha a = (ax, ay, az) és b = (bx, by, bz), akkor a × b = (aybz − azby, azbx − axbz, axby −
aybx).

6. Írja fel annak a síknak az egyenletét, amely az f(x, y) differenciálható függvény grafikonját az (x0, y0, f(x0, y0))
pontban érinti.
Megoldás. z = f(x0, y0) + f ′x(x0, y0)(x− x0) + f ′y(x0, y0)(y − y0).

7. Ismertesse egy folytonos vektormező felületi integráljának kiszámításának módját folytonosan differenciál-
ható függvénnyel megadott felület mentén.
Megoldás. Legyen D ⊆ R2, r : D → R3 paraméterezett irányított felület, u : R3 → R3 vektormező. Ekkor u
felületi integrálja a felületen

∫∫
D
∂r(u,v)
∂u

∂r(u,v)
∂v u(r(u, v)) dudv módon számítható, ha ∂r(u,v)

∂u × ∂r(u,v)
∂v iránya

a felület irányításának megfelelő, és ennek a −1-szerese, ha azzal ellentétes.
8. Mondja ki a Gauss–Osztrogradszkij-tételt.

Megoldás. Legyen V korlátos tartomány, amelyet a ∂V zárt, kifelé irányított felület határol, és legyen u (leg-
alább V egy környezetében) folytonosan differenciálható vektormező. Ekkor

∫∫
∂V

u · dA =
∫∫∫

V

div u dV

9. Mondja ki a Cauchy–Peano-féle egzisztenciatételt.
Megoldás. Ha D ⊆ R× Rn és f : D → Rn folytonos, akkor az y′ = f(x,y) differenciálegyenletnek bármely
(x0,y0) ∈ D esetén létezik az y(x0) = y0 kezdeti feltételt kielégítő lokális megoldása.

10. Mit értünk egzakt differenciálegyenlet alatt?
Megoldás. Egy P (x, y) +Q(x, y)y′ = 0 alakú differenciálegyenlet egzakt D ⊆ R2-en, ha létezik u : D → R,
amire P (x, y) = ∂

∂xu(x, y) és Q(x, y) = ∂
∂yu(x, y) teljesül. (Lokálisan ezzel ekvivalens: P ′y = Q′x.)



Feladatok (7× 10 = 70 pont)

1. Végezze el az f(x) = ln 1− x2

6− x2 függvény teljes függvényvizsgálatát.

Megoldás. Df = (−∞,−
√

6) ∪ (−1, 1) ∪ (
√

6,∞), páros, nem páratlan, nem periodikus, nincs zérushelye.

lim
x→−

√
6−
f(x) = lim

x→
√

6+
f(x) =∞

lim
x→−1+

f(x) = lim
x→1−

f(x) = −∞

lim
x→±∞

f(x) = lim
x→±∞

ln
1
x2 − 1
6
x2 − 1

= ln 1 = 0.

A deriváltak

f ′(x) = − 2x
1− x2 + 2x

6− x2 = − 10x
(1− x2)(6− x2)

f ′′(x) = −10(1− x2)(6− x2)− 10x(−2x)(6− x2)− 10x(1− x2)(−2x)
(1− x2)(6− x2)

= 10 3x4 − 7x2 − 6
(1− x2)2(6− x2)2 .

f ′ zérushelye x = 0, a második deriváltnak nincs zérushelye a Df halmazon. Az előjelek:

(−∞,−
√

6) (−1, 0) 0 (0, 1) (
√

6,∞)
f max
f ′ + + 0 − −
f ′′ + − − − +

Láttuk, hogy az x-tengely mindkét irányban vízszintes aszimptota. Rf = (−∞,− ln 6) ∪ (0,∞), grafikon:
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2. Számítsa ki az alábbi integrált.∫ √
−5 + 6x− x2 dx

Megoldás. x = 2 sin t+ 3, dx = 2 cos tdt helyettesítéssel∫ √
−5 + 6x− x2 dx =

∫ √
4− (x− 3)2 dx

=
∫

2

√
1−

(
x− 3

2

)2
dx

=
∫

4 cos2 tdt

=
∫

2(1 + cos 2t) dt

= 2t+ sin 2t

= 2 arcsin x− 3
2 + sin 2 arcsin x− 3

2 + C.



3. Határozza meg a
∞∑
n=1

(−1)n 1
n2n sor összegét.

Megoldás.

d
dx

∞∑
n=1

xn

n
=
∞∑
n=1

xn−1 =
∞∑
n=0

xn = 1
1− x,

ha |x| < 1, tehát

∞∑
n=1

xn

n
=
∫ x

0

1
1− ξ dξ = [− ln(1− ξ)]x0 = − ln(1− x).

A keresett numerikus sor x = − 1
2 helyettesítéssel adódik:

∞∑
n=1

(−1)n 1
n2n = − ln

(
1−

(
−1

2

))
= ln 2

3 .

4. Az a, b ∈ R paraméterek mely értékeinél létezik nemtriviális megoldása az

ax1 + x2 + x3 + x4 = 0
x1 + ax2 + x3 + x4 = 0
x1 + x2 + ax3 + x4 = 0
x1 + x2 + x3 + bx4 = 0

homogén lineáris egyenletrendszernek?
Megoldás. Az egyenletek és az ismeretlenek száma megegyezik, tehát akkor létezik nemtriviális megoldás,
ha az együtthatómátrix determinánsa 0.∣∣∣∣∣∣∣∣

a 1 1 1
1 a 1 1
1 1 a 1
1 1 1 b

∣∣∣∣∣∣∣∣
s1−as4
s2−s4
s3−s4=

∣∣∣∣∣∣∣∣
0 1− a 1− a 1− ab
0 a− 1 0 1− b
0 0 a− 1 1− b
1 1 1 b

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣
1− a 1− a 1− ab
a− 1 0 1− b

0 a− 1 1− b

∣∣∣∣∣∣
= −(a− 1)2

∣∣∣∣∣∣
−1 −1 1− ab
1 0 1− b
0 1 1− b

∣∣∣∣∣∣ s2+s1= −(a− 1)2

∣∣∣∣∣∣
−1 −1 1− ab
0 −1 2− b− ab
0 1 1− b

∣∣∣∣∣∣
= (a − 1)2

∣∣∣∣−1 2− b− ab
1 1− b

∣∣∣∣ = (a − 1)2(ab + 2b − 3).

A második lépésben az első oszlop szerint fejtettük ki, a második lépésben az első két oszlopból a − 1
emelhető ki, a negyedik lépés az első oszlop szerinti kifejtés. Tehát pontosan akkor létezik nemtriviális
megoldás, ha a = 1 vagy (a+ 2)b = 3 teljesül.

5. Számítsa ki az r(t) = (cos t+ t sin t)i + (sin t− t cos t)j + t2k egyenletű görbe t ∈ [0, 10] paraméterértékeknek
megfelelő darabjának ívhosszát.
Megoldás. A derivált abszolútértéke

|ṙ(t)| = |(− sin t+ sin t+ t cos t)i + (cos t− cos t+ t sin t)j + 2tk|

=
√

(t cos t)2 + (t sin t)2 + (2t)2

=
√

5t2 =
√

5t,

az ívhossz∫ 10

0
|ṙ(t)|dt =

√
5
∫ 10

0
tdt =

√
5
[
t2

2

]10

0
= 50

√
5.

6. Határozza meg az u(x, y, z) = (x + y)i + (y + z)j + (z + x)k vektormező integrálját az r(t) = cos(t)i +
cos
(
t+ 2π

3
)

j + cos
(
t+ 4π

3
)

k görbe t ∈ [−π, π] paraméterértékeknek megfelelő darabján.



Megoldás. A görbe paraméterezésének deriváltja ṙ(t) = − sin(t)i− sin
(
t+ 2π

3
)

j− sin
(
t+ 4π

3
)

k, a vektor-
mező értéke a görbén

u(r(t)) =
[
cos(t) + cos

(
t+ 2π

3

)]
i +
[
cos
(
t+ 2π

3

)
+ cos

(
t+ 4π

3

)]
j +
[
cos
(
t+ 4π

3

)
+ cos(t)

]
k.

Az integrál∫
u · dr =

∫ π

−π
u(r(t)) · ṙ(t) dt

= −
∫ π

−π

[ [
cos(t) + cos

(
t+ 2π

3

)]
sin(t) +

[
cos
(
t+ 2π

3

)
+ cos

(
t+ 4π

3

)]
sin
(
t+ 2π

3

)
+
[
cos
(
t+ 4π

3

)
+ cos(t)

]
sin
(
t+ 4π

3

)]
dt

Mivel teljes perióduson integrálunk, és a három tag egymástól ± 2π
3 eltolásokban különbözik, az integráljuk

megegyezik. Emiatt∫
u · dr = −3

∫ π

−π

[
cos(t) sin(t) + cos

(
t+ 2π

3

)
sin(t)

]
dt

= −3
∫ π

−π

[
cos(t) sin(t) + cos(t) cos

(
2π
3

)
sin(t)− sin(t) sin

(
2π
3

)
sin(t)

]
dt

= 3 sin
(

2π
3

)∫ π

−π
sin2 tdt

= 3
√

3
2 π.

Megjegyzés. A Stokes-tételt is lehet használni: rot u(x, y, z) = i+j+k, a görbe
√

3
2 sugarú kör az x+y+z = 0

síkban, a körlap jobbkéz-szabály szerinti irányítású normálvektora i + j + k, tehát az integrál a terület
√

3-
szorosa, azaz 3

√
3

2 π.
7. Határozza meg az y′ + y = e−x

√
x differenciálegyenlet általános megoldását.

Megoldás. Az egyenlet elsőrendű lineáris, először a hozzá tartozó homogén egyenletet oldjuk meg. Az
egyenlet állandó együtthatós, a karakterisztikus polinom λ + 1, tehát a gyök −1, a homogén egyenlet
általános megoldása Ce−x.
Az inhomogén egyenlet megoldását az állandó variálásának módszere szerint y(x) = c(x)e−x alakban keres-
sük. Behelyettesítve

c′(x)e−x − c(x)e−x + c(x)e−x = e−x
√
x,

amiből c′(x) =
√
x. Integrálva c(x) = 2

3x
3/2 +C adódik, így az általános megoldás y(x) = 2

3x
3/2e−x+Ce−x.


