
Matematika szigorlat G – 2025. június 19.

Elmélet (10× 3 = 30 pont)

1. Írja le egy trigonometrikus alakban adott komplex szám n. gyökeinek meghatározásának módszerét.
Megoldás. A komplex számot felírjuk trigonometrikus alakban: r(cosϕ+ i sinϕ), ahol r > 0, ϕ ∈ R. Ha r 6=

0, akkor pontosan n darab n. gyöke van, ezek n
√
r

(
cos ϕ+ 2πk

n
+ i sin ϕ+ 2πk

n

)
, ahol k = 0, 1, . . . , n− 1.

2. Definiálja, hogy mit jelent, hogy az f függvénynek az x0 ∈ R pontban a jobboldali határértéke −∞.
Megoldás. ∀K ∈ R∃δ > 0∀x ∈ (x0, x0 + δ) : f(x) < K.

3. Mondja ki az egyváltozós függvényekre vonatkozó Newton–Leibniz-tételt.
Megoldás. Ha F folytonos az [a, b] intervallumon, differenciálható (a, b)-n, deriváltja ott f és f integrálható,
akkor

∫ b
a
f(x) dx = F (b)− F (a).

4. Mit nevezünk abszolút konvergens numerikus sornak? Adjon példát olyan sorra, amely konvergens, de nem
abszolút konvergens.
Megoldás. A

∑∞
n=n0

an sor abszolút konvergens, ha
∑∞
n=n0

|an| konvergens. Például
∑∞
n=1(−1)n 1

n .
5. Definiálja a v1,v2, . . . ,vk vektorok lineáris függetlenségének fogalmát.

Megoldás. A v1,v2, . . . ,vk lineárisan függetlenek, ha α1v1 + α2v2 + · · ·αkvk = 0 esetén α1 = α2 = · · · =
αk = 0.

6. Adjon elégséges feltételt arra, hogy az f(x, y) kétszer differenciálható kétváltozós függvénynek az (x0, y0)
pontban lokális szélsőértéke legyen.

Megoldás. Ha f ′x(x0, y0) = f ′y(x0, y0) = 0 és
∣∣∣∣f ′′xx(x0, y0) f ′′yx(x0, y0)
f ′′xy(x0, y0) f ′′yy(x0, y0)

∣∣∣∣ > 0, akkor az (x0, y0) pontban lokális

szélsőérték van.
7. Hogyan lehet kiszámítani az r : [a, b]→ R3 differenciálható függvénnyel megadott térgörbe ívhosszát?

Megoldás.
∫ b

a

|ṙ(t)|dt.

8. Mondja ki a Stokes-tételt.
Megoldás. Legyen S irányított felület, pereme a jobbkéz-szabály szerint irányítva ∂S, és legyen u (legalább
S egy környezetében) folytonosan differenciálható vektormező. Ekkor

∫
∂S

u · dr =
∫∫

S

rot u · dA.

9. Mondja ki a Picard–Lindelöf-tételt.
Megoldás. Ha D ⊆ R × Rn és f : D → Rn folytonos, a második (vektor) változóban Lipschitz-folytonos,
akkor az y′ = f(x,y) differenciálegyenletnek bármely (x0,y0) ∈ D esetén létezik az y(x0) = y0 kezdeti
feltételt kielégítő lokális megoldása, és az egyértelmű.

10. Mit nevezünk szétválasztható változójú közönséges differenciálegyenletnek?
Megoldás. Egy elsőrendű differenciálegyenlet szétválasztható változójú, ha y′ = f(x)g(y) alakú.



Feladatok (7× 10 = 70 pont)
1. Számítsa ki az alábbi sorozatok határértékét.

an = (2n+ 3)n

(2n− 1)n

bn =
√
n−

√
n−
√
n

Megoldás.

lim
n→∞

an = lim
n→∞

(2n+ 3)n

(2n− 1)n

= lim
n→∞

(1 + 3
2

1
n )n

(1− 1
2

1
n )n

= e3/2

e−1/2 = e2.

lim
n→∞

bn = lim
n→∞

√
n−

√
n−
√
n

= lim
n→∞

n− (n−
√
n)

√
n+

√
n−
√
n

= lim
n→∞

1
1 +

√
1− 1√

n

= 1
2 .

2. Számítsa ki az alábbi integrált.∫
x sin2 xdx

Megoldás. Linearizáló formula és parciális integrálás alkalmazásával∫
x sin2 x dx =

∫
x

1− cos 2x
2 dx =

∫
x

2 dx−
∫
x

2 cos 2xdx = x2

4 −
∫
x

2 cos 2xdx

= x2

4 −
x sin 2x

4 + 1
4

∫
sin 2x dx = x2

4 −
x sin 2x

4 − cos 2x
8 + C.

3. Határozza meg az f(x) = 1
(x+ 1)(x+ 2) függvény x0 = 0 középpontú Taylor-sorát és annak konvergencia-

sugarát.
Megoldás. A függvényt parciális törtekre bontjuk:

1
(x+ 1)(x+ 2) = A

x+ 1 + B

x+ 2

a közös nevezővel megszorozva 1 = A(x + 2) + B(x + 1) = (A + B)x + (2A + B) akkor teljesül minden x
esetén, ha

0 = A+B

1 = 2A+B,

tehát A = 1, B = −1. A Taylor-sor két mértani sor összegeként áll elő:

f(x) = 1
(x+ 1)(x+ 2)

= 1
x+ 1 −

1
x+ 2

= 1
1− (−x) −

1
2

1
1− (−x2 )

=
∞∑
n=0

(−x)n − 1
2

∞∑
n=0

(
−x2

)n
=
∞∑
n=0

[
(−1)n − 1

2

(
−1

2

)n]
xn

=
∞∑
n=0

(−1)n 2n+1 − 1
2n+1 xn,

a konvergenciasugár 1.



4. Határozza meg az A mátrix sajátértékeit és sajátvektorait. Létezik-e sajátvektorokból álló bázis (C felett)?

A =

0 2 −2
6 4 −1
6 6 −3


Megoldás. A karakterisztikus polinom

det(A− λI) =

∣∣∣∣∣∣
−λ 2 −2
6 4− λ −1
6 6 −3− λ

∣∣∣∣∣∣
= −λ(4− λ)(−3− λ) + 2 · (−1) · 6 + (−2) · 6 · 6
− (−λ) · (−1) · 6− 2 · 6 · (−3− λ)− (−2) · (4− λ) · 6

= −λ3 + λ2 + 6λ
= −(λ− 3)λ(λ+ 2),

tehát a sajátértékek −2, 0, 3. Mivel annyi különböző sajátérték van, amennyi a dimenzió, létezik sajátvek-
torokból álló bázis.
A λ = −2 sajátértékhez tartozó sajátvektorok2 2 −2

6 6 −1
6 6 −1

 s2−3s1∼
[
2 2 −2
0 0 5

]

alapján
[
1 −1 0

]T nullvektortól különböző többszörösei.
A λ = 0 sajátértékhez tartozó sajátvektorok0 2 −2

6 4 −1
6 6 −3

 s3−s2∼

0 2 −2
6 4 −1
0 2 −2


alapján

[
−1 2 2

]T nullvektortól különböző többszörösei.
A λ = 3 sajátértékhez tartozó sajátvektorok−3 2 −2

6 1 −1
6 6 −6

 s2+2s1
s3+2s1∼

−3 2 −2
0 5 −5
0 10 −10

 ∼ [−3 0 0
0 1 −1

]
∼

alapján
[
0 1 1

]T nullvektortól különböző többszörösei.
5. Integrálja az u(x, y, z) = yi−xj−zk vektormezőt a z = x2 +y2 egyenletű felület x2 +y2 ≤ 4 egyenlőtlenség

által meghatározott darabján felfelé (a z-tengely pozitív fele felé) mutató irányítás mellett.
Megoldás. A felületdarab egy paraméterezése r(r, φ) = r cosφi + r sinφj + r2k, a paramétertartomány
0 ≤ r ≤ 2, 0 ≤ φ ≤ 2π. A normálvektor

∂r
∂r
× ∂r
∂φ

= (cosφi + sinφj + 2rk)× (−r sinφi + r cosφj) = −2r2 cosφi− 2r2 sinφj + rk,

a vektormező értéke a felületen

u(r(r, φ)) = r sinφi− r cosφj− r2k.

Az integrál∫∫
S

u · dA =
∫ 2

0

∫ 2π

0
u(r(r, φ)) ·

(
∂r
∂r
× ∂r
∂φ

)
dφdr

=
∫ 2

0

∫ 2π

0

(
r sinφi− r cosφj− r2k

)
·
(
−2r2 cosφi− 2r2 sinφj + rk

)
dφdr

=
∫ 2

0

∫ 2π

0

(
−r3) dφdr = 2π

∫ 2

0

(
−r3) dr = −2π 24

4 = −8π.

6. Határozza meg az x2 +y2 ≤ 1, 0 ≤ z ≤ 4− (x−1)2−y2 egyenlőtlenség-rendszer által meghatározott alakzat
tömegközéppontját.



Megoldás. Használjunk hengerkoordináta-rendszert: r(r, φ, z) = r cosφi + r sinφj + zk, a paramétertarto-
mányt megadó egyenlőtlenségek 0 ≤ r ≤ 1, 0 ≤ φ ≤ 2π, 0 ≤ z ≤ 4−(r cosφ−1)2−r2 sin2 φ = 3−r2+2r cosφ,
a Jacobi-determináns r. A tömegközéppont koordinátái az elsőrendű nyomatékok és a térfogat hányadosai.
A szükséges integrálok:∫ 1

0

∫ 2π

0

∫ 3−r2+2r cosφ

0
r dz dφdr =

∫ 1

0

∫ 2π

0
(3− r2 + 2r cosφ)r dφdr

= 2π
∫ 1

0
(3− r2)r dr = 5

2π∫ 1

0

∫ 2π

0

∫ 3−r2+2r cosφ

0
r cosφr dz dφdr =

∫ 1

0

∫ 2π

0
(3− r2 + 2r cosφ)r cosφr dφ dr

= 2π
∫ 1

0
r3 dr = 1

2π∫ 1

0

∫ 2π

0

∫ 3−r2+2r cosφ

0
r sinφr dz dφdr =

∫ 1

0

∫ 2π

0
(3− r2 + 2r cosφ)r sinφr dφdr = 0∫ 1

0

∫ 2π

0

∫ 3−r2+2r cosφ

0
zr dz dφdr =

∫ 1

0

∫ 2π

0

(3− r2 + 2r cosφ)2

2 r dφdr

= 2π
∫ 1

0

(3− r2)2 + 2r2

2 r dr

= π

∫ 1

0
(9 + r4 − 4r2)r dr = 11

3 π.

A tömegközéppont helye ( 1
5 , 0,

22
15 ).

7. Határozza meg az y′′ − 3y′ + 2y = x2 differenciálegyenlet általános megoldását.
Megoldás. Az egyenlet inhomogén állandó együtthatós lineáris, először a hozzá tartozó homogén egyenletet
oldjuk meg. A karakterisztikus polinom λ2 − 3λ + 2 = (λ − 1)(λ − 2), tehát a gyökök 1 és 2. A homogén
egyenlet általános megoldása Aex +Be2x.
Az inhomogén tag polinom, nincs rezonancia, az inhomogén egyenlet egy megoldását kereshetjük y(x) =
C0 + C1x+ C2x

2 alakban. A deriváltak

y′(x) = C1 + 2C2x

y′′(x) = 2C2,

az egyenletbe behelyettesítve

2C0 − 3C1 + 2C2 + (2C1 − 6C2)x+ 2C2x
2 = x2

adódik, ez akkor teljesül minden x-re, ha 2C0−3C1 +2C2 = 0 = 2C1−6C2 és 2C2 = 1. Az egyenletrendszer
megoldása C0 = 7

4 , C1 = 3
2 , C2 = 1

2 , tehát az inhomogén egyenlet általános megoldása y(x) = 7
4 + 3

2x +
1
2x

2 +Aex +Be2x.


