
Matematika szigorlat G – 2025. június 26.

Elmélet (10× 3 = 30 pont)

1. Definiálja egy z komplex szám trigonometrikus alakját. Írja fel trigonometrikus alakban az −1−
√

3i számot.

Megoldás. A trigonometrikus alak r(cosϕ + i sinϕ), ahol r ≥ 0, ϕ ∈ R. −1 −
√

3i = 2
(
− 1

2 −
√

3
2 i
)

=
2(cos 4π

3 + i sin 4π
3 ).

2. Mondja ki az inverz függvény y0 pontbeli differenciálhatóságára vonatkozó szabályt.
Megoldás. Ha az f függvény invertálható, differenciálható az f−1(y0) pontban és deriváltja ott nem 0, akkor
f−1 differenciálható az y0 pontban, és a deriváltja ott 1

f ′(f−1(y0)) .
3. Mondja ki a Lagrange-féle középértéktételt.

Megoldás. Legyen f : [a, b]→ R folytonos, az (a, b) intervallumon differenciálható. Ekkor létezik c ∈ (a, b),
amire f ′(c) = f(b)−f(a)

b−a .
4. Definiálja a függvénysorozatok egyenletes konvergenciájának fogalmát. Adjon példát olyan függvénysoro-

zatra, amely [0, 1] minden pontjában konvergens, de nem egyenletesen konvergens ezen az intervallumon.
Megoldás. Egy fn függvénysorozat a H halmazon (ami az értelmezési tartományok metszetének részhalma-
za) egyenletesen konvergens és határértéke ott f , ha ∀ε∃N0 ∈ N∀x∀n ≥ N0 : |f(x) − fn(x)| < ε. Például
fn(x) = xn.

5. Definiálja a lineáris transzformációk sajátértékének és sajátvektorának fogalmát.
Megoldás. Legyen V vektortér a K test felett felett, L : V → V lineáris transzformáció. A v ∈ V vektor az
L lineáris transzformáció λ ∈ K sajátértékhez tartozó sajátvektora, ha v 6= 0 és L(v) = λ · v.

6. Definiálja az f : Rn → R függvény iránymenti deriváltjának fogalmát.
Megoldás. Ha e ∈ Rn egységvektor, akkor f e irányú deriváltjának az r0 pontban a t 7→ f(r0 + te) függvény
0-beli deriváltját nevezzük.

7. Ismertesse a felületi integrál kiszámításának módját.
Megoldás. Legyen D ⊆ R2, r : D → R3 paraméterezett irányított felület, u : R3 → R3 vektormező. Ekkor u
felületi integrálja a felületen

∫∫
D
∂r(u,v)
∂u

∂r(u,v)
∂v u(r(u, v)) dudv módon számítható, ha ∂r(u,v)

∂u × ∂r(u,v)
∂v iránya

a felület irányításának megfelelő, és ennek a −1-szerese, ha azzal ellentétes.
8. Mondja ki a vonalmenti integrálra vonatkozó Newton-Leibniz-tételt.

Megoldás. Ha v (skalár-)potenciálos vektormező, egy potenciálja u, és r : [a, b] → R3 térgörbe, akkor v
integrálja a görbe mentén u(r(b))− u(r(a)).

9. Definiálja a Lipschitz-folytonosság fogalmát.
Megoldás. Egy f : R → R függvény Lipschitz-folytonos, ha létezik olyan L > 0 szám, amivel minden
x, x′ ∈ R esetén |f(x)− f(x′)| ≤ L|x− x′|.

10. Definiálja az f : [0,∞)→ R függvény Laplace-transzformáltját.
Megoldás. (Lf)(z) =

∫∞
0 f(x)e−zx dz, Lf értelmezési tartománya azon z számok halmaza, amelyre ez az

integrál létezik.



Feladatok (7× 10 = 70 pont)

1. Végezze el az f(x) = x4

1 + x3 függvény teljes függvényvizsgálatát.

Megoldás. Df = R \ {−1}, nem páros, nem páratlan, nem periodikus, zérushelye x = 0.

lim
x→±∞

f(x) = lim
x→±∞

x
1

1
x3 + 1

= ±∞ lim
x→−1±

f(x) = lim
x→±∞

x4

1− x+ x2
1

1 + x
= ±∞

A deriváltak

f ′(x) = 4x3(1 + x3)− x4 · 3x2

(1 + x3)2 = 4x3 + x6

(1 + x3)2

f ′′(x) = (12x2 + 6x5)(1 + x3)2 − (4x3 + x6) · 2(1 + x3) · 3x2

(1 + x3)4

= −6x2 x3 − 2
(1 + x3)3 .

f ′ zérushelyei 0 és − 3
√

4, a második derivált zérushelyei 0 és 3
√

2. Az előjelek:

(−∞,− 3
√

4) − 3
√

4 (− 3
√

4,−1) −1 (−1, 0) 0 (0, 3
√

2) 3
√

2 ( 3
√

2,∞)
f max X min infl
f ′ + 0 − X − 0 + + +
f ′′ − − − X + + + 0 −

lim
x→±∞

f(x)
x

= lim
x→±∞

x
1

1
x3 + 1

= 1

lim
x→±∞

f(x)− x = lim
x→±∞

− x

1 + x3 = 0,

tehát az y = x egyenes mindkét irányban ferde aszimptota. Rf = (−∞,− 4 3√4
2 ] ∪ [0,∞), grafikon:

−2 −1 1 2

−2

−4

2

4

2. Számítsa ki az alábbi integrált.∫ 1

−1
x2
√

1− x2 dx



Megoldás. x = sin t, dx = cos t dt helyettesítést alkalmazunk:∫ 1

−1
x2
√

1− x2 dx =
∫ π/2

−π/2
sin2 t

√
1− sin2 t cos tdt

=
∫ π/2

−π/2
sin2 t cos2 tdt

=
∫ π/2

−π/2

1
4 sin2 2tdt

=
∫ π/2

−π/2

1− cos 4t
8 dt

=
[
t

8 −
sin 4t

32

]π/2

−π/2

= π

8 .

3. Határozza meg a
∞∑
n=1

(−2)n
3
√
n

(x+ 1)n hatványsor konvergenciatartományát.

Megoldás. A konvergenciasugár reciproka

1
R

= lim
n→∞

n

√∣∣∣∣ (−2)n
3
√
n

∣∣∣∣ = 2,

tehát a (−3/2,−1/2) nyílt intervallumon konvergens, de a R \ [−3/2,−1/2] halmazon nem konvergens.
A −3/2 pontban a sor

∞∑
n=1

(−2)n
3
√
n

(−1/2)n =
∞∑
n=1

1
3
√
n
,

ami a minoránskritérium szerint divergens, mivel 1
n ≤

1
3√n és a harmonikus sor divergens.

A −1/2 pontban a sor

∞∑
n=1

(−2)n
3
√
n

(1/2)n =
∞∑
n=1

(−1)n
3
√
n
,

ami Leibniz típusú, tehát konvergens. A konvergenciatartomány tehát (−3/2,−1/2].
4. Hol vannak és milyen típusúak az f(x, y) = (x2 − y)2 + (y − 4)2 függvény lokális szélsőértékei?

Megoldás. A függvény mindenhol folytonosan differenciálható, így lokális szélsőérték ott lehet, ahol az
elsőrendű parciális deriváltak eltűnnek.

f ′x(x, y) = 2(x2 − y) · 2x
f ′y(x, y) = 2(x2 − y) · (−1) + 2(y − 4),

akkor 0 mindkettő, ha x = 0 és y = 2 vagy x = ±2 és y = 4.
A Hesse-mátrix

H(x, y) =
[
f ′′xx(x, y) f ′′xy(x, y)
f ′′yx(x, y) f ′′yy(x, y)

]
=
[
8x2 + 4(x2 − y) −4x

−4x 4

]
,

detH(x, y) = 32x2 − 16y a (0, 2) pontban negatív, tehát ez nyeregpont, a (±2, 4) pontokban pozitív, ezek
lokális szélsőértékhelyek. Mivel a főátló elemei itt pozitívak, mindkettő lokális minimumhely.

5. Hol van a tömegközéppontja az x2 + y2 + z2 = 1 egyenletű felület x ≥ 0, y ≥ 0, z ≥ 1
2 egyenlőtlenségek

által kijelölt darabjának?
Megoldás. A gömbfelület szokásos paraméterezése r(ϑ, ϕ) = sinϑ cosϕi + sinϑ sinϕj + cosϑk, a megadott
darabnak megfelelő paramétertartomány 0 ≤ ϑ ≤ π

3 , 0 ≤ ϕ ≤ π
2 , a normálvektor abszolútértéke∣∣∣∣ ∂r

∂ϑ
× ∂r
∂ϕ

∣∣∣∣ = sinϑ.



A tömegközéppont koordinátái az elsőrendű nyomatékok és a felszín hányadosai. A szükséges integrálok∫ π/2

0

∫ π/3

0
sinϑ dϑ dϕ = π

2 [− cosϑ]π/3
0 = π

4∫ π/2

0

∫ π/3

0
sinϑ cosϕ sinϑ dϑ dϕ = [sinϕ]π/2

0

[
ϑ

2 −
sin 2ϑ

4

]π/3

0
= π

6 +
√

3
8∫ π/2

0

∫ π/3

0
sinϑ sinϕ sinϑ dϑ dϕ = [− cosϕ]π/2

0

[
ϑ

2 −
sin 2ϑ

4

]π/3

0
= π

6 +
√

3
8∫ π/2

0

∫ π/3

0
cosϑ sinϑ dϑ dϕ = π

2

[
−cos 2ϑ

4

]π/3

0
= 3π

16

A tömegközéppont helye tehát
(

2
3 −

√
3

2π ,
2
3 −

√
3

2π ,
3
4

)
.

6. Határozza meg az (x2 + 1)y′ − xy = x3 differenciálegyenlet általános megoldását.
Megoldás. Az egyenlet elsőrendű inhomogén lineáris, először a hozzá tartozó homogén egyenletet oldjuk
meg, ami szétválasztható:

y′

y
= x

x2 + 1 ,

mindkét oldalt integrálva ln|y(x)| = 1
2 ln(x2 + 1) +C, tehát a homogén egyenlet általános megoldása y(x) =

C
√
x2 + 1.

Az inhomogén egyenlet megoldását az állandó variálásának módszere szerint y(x) = c(x)
√
x2 + 1 alakban

keressük. Behelyettesítve

(x2 + 1)c′(x)
√
x2 + 1 + (x2 + 1)c(x) x√

x2 + 1
− xc(x)

√
x2 + 1 = x3,

tehát

c′(x) = x3

(x2 + 1)3/2 .

Az integráláshoz x = sinh t, dx = cosh tdt helyettesítést alkalmazunk:

c(x) =
∫

x3

(x2 + 1)3/2 dt =
∫ sinh3 t

cosh3 t
cosh tdt

=
∫ sinh t(cosh2 t− 1)

cosh2 t
dt =

∫ (
sinh t− (cosh t)−2 sinh t

)
dt

= cosh t+ 1
cosh t =

√
x2 + 1 + 1√

x2 + 1
= x2 + 2√

x2 + 1
+ C.

Az általános megoldás tehát

y(x) = x2 + 2 + C
√
x2 + 1.

7. Oldja meg az y + (x+ ey)y′ = 0 differenciálegyenletet y(0) = 1 kezdeti feltétel mellett.
Megoldás. Az egyenlet P (x, y) +Q(x, y)y′ = 0 alakú, ahol

∂P (x, y)
∂y

= 1 = ∂Q(x, y)
∂x

,

tehát egzakt. Egy potenciálfüggvény

u(x, y) =
∫ x

0
P (ξ, 0) dξ +

∫ y

0
Q(x, η) dη =

∫ y

0
(x+ eη) dη = xy + ey − 1.

Az általános megoldás u(x, y(x)) = C, a kezdeti feltétel alapján C = u(0, y(0)) = u(0, 1) = e − 1. A
kezdetiérték-probléma megoldása implicit alakban tehát xy(x) + ey(x) = e.


