Matematika szigorlat G — 2025. szeptember 29.
Elmélet (10 x 3 = 30 pont)

1.

10.

Hogyan lehet kiszamitani két trigonometrikus alakban adott komplex szdm szorzatat?

Megoldds. Ha z1 = r1(cospi + isingy) és zo = ra(cosa + isinps), akkor z1zo = rira(cos(v1 + ¢2) +
isin(p1 + p2)).

. Hogyan jellemezhet6 egy kétszer differencialhaté fiiggvény konvexitdsa a masodik derivalt segitségével?

Megoldas. Egy f : (a,b) — R kétszer differencidlhaté fiiggvény pontosan akkor konvex, ha f” nemnegativ.

. Mondja ki Rolle tételét.

Megoldas. Legyen f : [a,b] — R folytonos, az (a,b) intervallumon differencidlhaté, és tegyiik fel, hogy
f(a) = f(b). Ekkor létezik ¢ € (a,b), amire f'(c) = 0.

. Definialja a Leibniz-tipust sor fogalmat. Adjon példat is ra.

Megoldds. > o7

n=n,

Yos (=D

, @n Leibniz-sor, ha a tagok véltakozé el6jelfiek, |a,| monoton csdkken és |a,| — 0. Példdul

. Definidlja a vy, v, ..., vy vektorok linearis fliggetlenségének fogalmét.
Megoldds. A vi,va,..., vy linedrisan fliggetlenek, ha a1vy + aovo + -+~ apvy = 0 esetén o = g = -+ =
ap = 0.

. Definidlja az f : R™ — R fliggvény irdnymenti derivaltjanak fogalmat.

Megoldds. Ha e € R™ egységvektor, akkor f e irdnyt derivéltjdnak az rq pontban a t — f(ro 4+ te) fliggvény
0-beli derivaltjat nevezziik.

Hogyan lehet kiszdmitani az r : [a,b] — R? differencidlhaté fiiggvénnyel megadott térgorbe fvhosszat?

b
Megoldds. / |&(¢)| dt.

. Mondja ki a Gauss—Osztrogradszkij-tételt.

Megoldas. Legyen V korlatos tartomany, amelyet a OV zart, kifelé iranyitott feliilet hatarol, és legyen u
folytonosan differencidlhaté vektormez6. Ekkor / / u-dA = / / / divadV
oV \%

. Mondja ki a Cauchy—Peano-féle egzisztenciatételt.

Megoldds. Ha D CR x R™ és f : D — R™ folytonos, akkor az y’ = f(x,y) differencidlegyenletnek barmely
(20,¥0) € D esetén létezik az y(xg) = yo kezdeti feltételt kielégitd lokélis megoldésa.

Definiédlja a Lipschitz-folytonossig fogalmat.

Megoldas. Egy f : R — R fliggvény Lipschitz-folytonos, ha létezik olyan L > 0 szdm, amivel minden
xz,2’ € Resetén |f(x) — f(2')] < Lz — 2'|.



Feladatok (7 x 10 = 70 pont)
1. Szamitsa ki az aldbbi sorozatok hatarértékét.
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2. Szémitsa ki az aldbbi integralt.

Megoldds. Az integrandust parcialis tortekre bontjuk:

1 A B C

z(x 4+ 1)2 _E+m+1+(w+1)2’

mindkét oldalt megszorozva a kozos nevezivel
1=A(x+1)*+Bx(z+1)+Cr=(A+B)2* + 2A+B+C)z + A

adddik, amibél A =1, B = —1, C = —1. Az integral tehat

/de‘/@xil(mil)?)dx

1
=In|z| — Injz + 1| + oo +C.

3. Hatdrozza meg az f(r) = e?* cosh z fiiggvény zo = 0 kdzépponti Taylor-soréat és annak konvergenciasugarat.

Megoldds.
— 3z T
P el —e 7 e e
r)=e’sinhe =e—"— = — — —.
Az exponencidlis fiiggvény > % Taylor-sorat felhasznalva az f fliggvény xg = 0 koriili Taylor-sora

3 -1,
Z ol

n=0

Mivel mindkét tag Taylor-sora mindenhol konvergens, igy az Osszeg, azaz f Taylor-sordanak is végtelen a

konvergenciasugara.
7“‘2 = 2 .o 7z ek 7, " s 7’ .
4. Hol vannnak és milyen tipustak az f(x,y) = zye” b fliggvény lokalis szélsGértékei?



Megoldas. A figgvény mindenhol folytonosan differenciadlhaté, igy lokalis szélséérték ott lehet, ahol az
elsérendii parcialis derivaltak eltiinnek.
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a staciondrius pontok (0,0), (£1,+1) és (£1,F1).
A Hesse-matrix

_ [framy) f@y)] et [y =3)  (1—2?)(1—y?)
H(@y) = 7 ) ;g,<x,y>]‘ [<1z2><1y2> wy?—3) |

a pontokban behelyettesitve

H(0,0) = (1) (1)]
H(1,1) = H(-1,-1) = _02 _02]
H(1,—1) = H(=1,1) = i 2}

det H(0,0) = —1, tehat itt nyeregpont van, det H(+1,+1) = det H(i1,¥1) =
pontokban lokélis szélséérték van. A f64tl6 elemeinek elbjele alapjdn az (1,1) és (—
maximum van, az (1, —1) és (=1, 1) pontokban lokélis minimum.

% 0, tehat ezekben a
1 1) pontokban lokélis

. Hatérozza meg az r(¢,p) = (1 + sind) cospi + (1 + sin¥) sin pj + cos vk egyenletii felillet ¢ € [0, 2],
¢ € [0, 2] paramétertartomanynak megfelelé darabjanak felszinét.

Megoldds. A normalvektor abszolitértéke

81‘ or

90 99 = |(cos ¥ cos i + cos I sin pj — sin ¥k) x (—(1 + sin ) sin @i + (1 + sin J) cos @j)|

= [(1 + sin¥) sin ¥ cos i + (1 + sin ) sin ¥ sin pi + (1 + sin?) cos ¢
=1+sind.

A felszin ennek integralja a paramétertartoményon:

/27\' /27‘{
. Oldja meg az ey + (e + 3y?)y’ = 0 differencidlegyenletet y(0) = 2 kezdeti feltétel mellett.
Megoldds. Az egyenlet P(x,y) + Q(x,y)y’ = 0 alakd, ahol

OP(r,y) . _ 0Q(z,y)

e
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or

2T 2m
e 3 d19d<p / / (1 +sin®) dd dp = 472

tehat egzakt. Egy potencialfiiggvény

u(zr,y) = /Ox P(¢,0) d€+/0y Q(z,m)dn
=/y(ez+3n2)d77

0
= [emn+7]
=y +y°,
az altalanos megoldds u(x,y(x)) = C. A kezdeti feltétel alapjan C' = u(0,y(0)) = u(0,2) = 10, tehat a
kezdetiérték-probléma megolddsa implicit alakban e*y(z) + y(z)3 = 10.
. Hatdrozza meg az y" + 2y’ + 2y = 2z differencidlegyenlet 4ltaldnos megold4sat.

Megoldds. Az egyenlet inhomogén dllandd egytitthatés lineéris, elészor a hozza tartozé homogén egyenletet
oldjuk meg. A karakterisztikus polinom A2 + 2\ +2, tehat a gyokok —1+ £4. A homogén egyenlet altaldnos
megoldasa Ae % cosx + Be *sinz.



Az inhomogén tag polinomszor, nincs rezonancia, az inhomogén egyenlet egy megoldédsét kereshetjiik y(z) =
Co + Cqz alakban. A derivaltak

az egyenletbe behelyettesitve
QCl —+ 2(C0 —+ CllL') = 21’

adédik, ez akkor teljesiil minden z-re, ha 2Cy+2C; = 0 és 2C; = 2. Az egyenletrendszer megoldasa Cy = —1
és C1 = 1, tehdt az inhomogén egyenlet altaldnos megolddsa y(z) = x — 1+ Ae *cosxz + Be “sinx.



