
Matematika szigorlat G – 2025. szeptember 29.

Elmélet (10× 3 = 30 pont)

1. Hogyan lehet kiszámítani két trigonometrikus alakban adott komplex szám szorzatát?
Megoldás. Ha z1 = r1(cosϕ1 + i sinϕ1) és z2 = r2(cosϕ2 + i sinϕ2), akkor z1z2 = r1r2(cos(ϕ1 + ϕ2) +
i sin(ϕ1 + ϕ2)).

2. Hogyan jellemezhető egy kétszer differenciálható függvény konvexitása a második derivált segítségével?
Megoldás. Egy f : (a, b)→ R kétszer differenciálható függvény pontosan akkor konvex, ha f ′′ nemnegatív.

3. Mondja ki Rolle tételét.
Megoldás. Legyen f : [a, b] → R folytonos, az (a, b) intervallumon differenciálható, és tegyük fel, hogy
f(a) = f(b). Ekkor létezik c ∈ (a, b), amire f ′(c) = 0.

4. Definiálja a Leibniz-típusú sor fogalmát. Adjon példát is rá.
Megoldás.

∑∞
n=n0

an Leibniz-sor, ha a tagok váltakozó előjelűek, |an| monoton csökken és |an| → 0. Például∑∞
n=1(−1)n 1

n .
5. Definiálja a v1,v2, . . . ,vk vektorok lineáris függetlenségének fogalmát.

Megoldás. A v1,v2, . . . ,vk lineárisan függetlenek, ha α1v1 + α2v2 + · · ·αkvk = 0 esetén α1 = α2 = · · · =
αk = 0.

6. Definiálja az f : Rn → R függvény iránymenti deriváltjának fogalmát.
Megoldás. Ha e ∈ Rn egységvektor, akkor f e irányú deriváltjának az r0 pontban a t 7→ f(r0 + te) függvény
0-beli deriváltját nevezzük.

7. Hogyan lehet kiszámítani az r : [a, b]→ R3 differenciálható függvénnyel megadott térgörbe ívhosszát?

Megoldás.
∫ b

a

|ṙ(t)|dt.

8. Mondja ki a Gauss–Osztrogradszkij-tételt.
Megoldás. Legyen V korlátos tartomány, amelyet a ∂V zárt, kifelé irányított felület határol, és legyen u
folytonosan differenciálható vektormező. Ekkor

∫∫
∂V

u · dA =
∫∫∫

V

div u dV

9. Mondja ki a Cauchy–Peano-féle egzisztenciatételt.
Megoldás. Ha D ⊆ R× Rn és f : D → Rn folytonos, akkor az y′ = f(x,y) differenciálegyenletnek bármely
(x0,y0) ∈ D esetén létezik az y(x0) = y0 kezdeti feltételt kielégítő lokális megoldása.

10. Definiálja a Lipschitz-folytonosság fogalmát.
Megoldás. Egy f : R → R függvény Lipschitz-folytonos, ha létezik olyan L > 0 szám, amivel minden
x, x′ ∈ R esetén |f(x)− f(x′)| ≤ L|x− x′|.



Feladatok (7× 10 = 70 pont)

1. Számítsa ki az alábbi sorozatok határértékét.

an = 3n4 + 2n + cos(
√
n)

2n+3 − n5 + 7
bn =

√
n− n√

n+ 2

Megoldás.

lim
n→∞

an = lim
n→∞

3n4 + 2n + cos(
√
n)

2n+3 − n5 + 7

= lim
n→∞

3n4

2n + 1 + cos(
√
n)

2n

8− n5

2n + 7
2n

= 1
8 .

lim
n→∞

bn = lim
n→∞

√
n− n√

n+ 2

= lim
n→∞

√
n2 + 2n− n√

n+ 2

= lim
n→∞

n2 + 2n− n2
√
n+ 2(

√
n2 + 2n+ n)

= lim
n→∞

2
√
n+ 2(

√
1 + 2

n + 1)
= 0.

2. Számítsa ki az alábbi integrált.∫ 1
x(x+ 1)2 dx

Megoldás. Az integrandust parciális törtekre bontjuk:

1
x(x+ 1)2 = A

x
+ B

x+ 1 + C

(x+ 1)2 ,

mindkét oldalt megszorozva a közös nevezővel

1 = A(x+ 1)2 +Bx(x+ 1) + Cx = (A+B)x2 + (2A+B + C)x+A

adódik, amiből A = 1, B = −1, C = −1. Az integrál tehát∫ 1
x(x+ 1)2 dx =

∫ ( 1
x
− 1
x+ 1 −

1
(x+ 1)2

)
dx

= ln|x| − ln|x+ 1|+ 1
x+ 1 + C.

3. Határozza meg az f(x) = e2x cosh x függvény x0 = 0 középpontú Taylor-sorát és annak konvergenciasugarát.
Megoldás.

f(x) = e2x sinh x = e2x e
x − e−x

2 = e3x

2 −
ex

2 .

Az exponenciális függvény
∑∞
n=0

xn

n! Taylor-sorát felhasználva az f függvény x0 = 0 körüli Taylor-sora

∞∑
n=0

3n − 1
2n! xn.

Mivel mindkét tag Taylor-sora mindenhol konvergens, így az összeg, azaz f Taylor-sorának is végtelen a
konvergenciasugara.

4. Hol vannnak és milyen típusúak az f(x, y) = xye−
x2+y2

2 függvény lokális szélsőértékei?



Megoldás. A függvény mindenhol folytonosan differenciálható, így lokális szélsőérték ott lehet, ahol az
elsőrendű parciális deriváltak eltűnnek.

f ′x(x, y) = ye−
x2+y2

2 + xye−
x2+y2

2 (−x) = (1− x2)ye−
x2+y2

2

f ′y(x, y) = xe−
x2+y2

2 + xye−
x2+y2

2 (−y) = x(1− y2)e−
x2+y2

2 ,

a stacionárius pontok (0, 0), (±1,±1) és (±1,∓1).
A Hesse-mátrix

H(x, y) =
[
f ′′xx(x, y) f ′′xy(x, y)
f ′′yx(x, y) f ′′yy(x, y)

]
= e−

x2+y2
2

[
xy(x2 − 3) (1− x2)(1− y2)

(1− x2)(1− y2) xy(y2 − 3)

]
,

a pontokban behelyettesítve

H(0, 0) =
[
0 1
1 0

]
H(1, 1) = H(−1,−1) =

[
− 2
e 0

0 − 2
e

]
H(1,−1) = H(−1, 1) =

[ 2
e 0
0 2

e

]
.

detH(0, 0) = −1, tehát itt nyeregpont van, detH(±1,±1) = detH(±1,∓1) = 4
e2 > 0, tehát ezekben a

pontokban lokális szélsőérték van. A főátló elemeinek előjele alapján az (1, 1) és (−1,−1) pontokban lokális
maximum van, az (1,−1) és (−1, 1) pontokban lokális minimum.

5. Határozza meg az r(ϑ, ϕ) = (1 + sinϑ) cosϕi + (1 + sinϑ) sinϕj + cosϑk egyenletű felület ϑ ∈ [0, 2π],
ϕ ∈ [0, 2π] paramétertartománynak megfelelő darabjának felszínét.
Megoldás. A normálvektor abszolútértéke∣∣∣∣ ∂r

∂ϑ
× ∂r
∂ϕ

∣∣∣∣ = |(cosϑ cosϕi + cosϑ sinϕj− sinϑk)× (−(1 + sinϑ) sinϕi + (1 + sinϑ) cosϕj)|

= |(1 + sinϑ) sinϑ cosϕi + (1 + sinϑ) sinϑ sinϕi + (1 + sinϑ) cosϕ|
= 1 + sinϑ.

A felszín ennek integrálja a paramétertartományon:∫ 2π

0

∫ 2π

0

∣∣∣∣ ∂r
∂ϑ
× ∂r
∂ϕ

∣∣∣∣dϑ dϕ =
∫ 2π

0

∫ 2π

0
(1 + sinϑ) dϑ dϕ = 4π2.

6. Oldja meg az exy + (ex + 3y2)y′ = 0 differenciálegyenletet y(0) = 2 kezdeti feltétel mellett.
Megoldás. Az egyenlet P (x, y) +Q(x, y)y′ = 0 alakú, ahol

∂P (x, y)
∂y

= ex = ∂Q(x, y)
∂x

,

tehát egzakt. Egy potenciálfüggvény

u(x, y) =
∫ x

0
P (ξ, 0) dξ +

∫ y

0
Q(x, η) dη

=
∫ y

0
(ex + 3η2) dη

=
[
exη + η3]y

0

= exy + y3,

az általános megoldás u(x, y(x)) = C. A kezdeti feltétel alapján C = u(0, y(0)) = u(0, 2) = 10, tehát a
kezdetiérték-probléma megoldása implicit alakban exy(x) + y(x)3 = 10.

7. Határozza meg az y′′ + 2y′ + 2y = 2x differenciálegyenlet általános megoldását.
Megoldás. Az egyenlet inhomogén állandó együtthatós lineáris, először a hozzá tartozó homogén egyenletet
oldjuk meg. A karakterisztikus polinom λ2 +2λ+2, tehát a gyökök −1+±i. A homogén egyenlet általános
megoldása Ae−x cosx+Be−x sin x.



Az inhomogén tag polinomszor, nincs rezonancia, az inhomogén egyenlet egy megoldását kereshetjük y(x) =
C0 + C1x alakban. A deriváltak

y′(x) = C1

y′′(x) = 0,

az egyenletbe behelyettesítve

2C1 + 2(C0 + C1x) = 2x

adódik, ez akkor teljesül minden x-re, ha 2C0+2C1 = 0 és 2C1 = 2. Az egyenletrendszer megoldása C0 = −1
és C1 = 1, tehát az inhomogén egyenlet általános megoldása y(x) = x− 1 +Ae−x cosx+Be−x sin x.


