
Matematika szigorlat G – 2026. január 14.

Elmélet (10× 3 = 30 pont)

1. Írja le egy trigonometrikus alakban adott komplex szám n. gyökeinek meghatározásának módszerét.
Megoldás. A komplex számot felírjuk trigonometrikus alakban: r(cosϕ+ i sinϕ), ahol r > 0, ϕ ∈ R. Ha r 6=

0, akkor pontosan n darab n. gyöke van, ezek n
√
r

(
cos ϕ+ 2πk

n
+ i sin ϕ+ 2πk

n

)
, ahol k = 0, 1, . . . , n− 1.

2. Milyen q ∈ R esetén konvergens az an = aqn mértani sorozat? Mi a határértéke?
Megoldás. A konvergencia feltétele −1 < q ≤ 1. Ha |q| < 1, akkor a határérték 0, ha q = 1, akkor pedig a.

3. Mondja ki Rolle tételét.
Megoldás. Legyen f : [a, b] → R folytonos, az (a, b) intervallumon differenciálható, és tegyük fel, hogy
f(a) = f(b). Ekkor létezik c ∈ (a, b), amire f ′(c) = 0.

4. Definiálja a függvénysorok egyenletes konvergenciájának fogalmát.
Megoldás. Egy fn függvénysor a H halmazon (ami az értelmezési tartományok metszetének részhalmaza)
egyenletesen konvergens és összegfüggvénye ott s, ha ∀ε∃N0 ∈ N∀x∀n ≥ N0 : |s(x)−

∑n
k=0 fk(x)| < ε.

5. Definiálja a v1,v2, . . . ,vk vektorok lineáris függetlenségének fogalmát.
Megoldás. A v1,v2, . . . ,vk lineárisan függetlenek, ha α1v1 + α2v2 + · · ·αkvk = 0 esetén α1 = α2 = · · · =
αk = 0.

6. Írja fel annak a síknak az egyenletét, amely az f(x, y) differenciálható függvény grafikonját az (x0, y0, f(x0, y0))
pontban érinti.
Megoldás. z = f(x0, y0) + f ′x(x0, y0)(x− x0) + f ′y(x0, y0)(y − y0).

7. Adjon elégséges feltételt térbeli vektormező vektorpotenciáljának létezésére a derivált segítségével.
Megoldás. Legyen v : D → R3 vektormező. Ha D konvex (vagy csillagszerű vagy egyszeresen összefüggő)
és div v = 0, akkor létezik a D tartományon vektorpotenciál.

8. Mondja ki a Stokes-tételt.
Megoldás. Legyen S irányított felület, pereme a jobbkéz-szabály szerint irányítva ∂S, és legyen u (legalább
S egy környezetében) folytonosan differenciálható vektormező. Ekkor

∫
∂S

u · dr =
∫∫

S

rot u · dA.

9. Mondja ki a Picard–Lindelöf-tételt.
Megoldás. Ha D ⊆ R × Rn és f : D → Rn folytonos, a második (vektor) változóban Lipschitz-folytonos,
akkor az y′ = f(x,y) differenciálegyenletnek bármely (x0,y0) ∈ D esetén létezik az y(x0) = y0 kezdeti
feltételt kielégítő lokális megoldása, és az egyértelmű.

10. Definiálja a lineáris állandó együtthatós homogén differenciálegyenletek karakterisztikus egyenletét. Hogyan
lehet ennek segítségével meghatározni az általános megoldást?
Megoldás. Az any(n) + an−1y

(n−1) + · · · + a1y
′ + a0y = 0 lineáris állandó együtthatós homogén differen-

ciálegyenlet karakterisztikus egyenlete az anλn + an−1λ
n−1 + · · · + a1λ + a0 = 0 egyenlet. Ha ennek gyö-

kei λ1, . . . , λr, multiplicitásuk rendre m1, . . . ,mr, akkor a differenciálegyenlet megoldásterének egy bázisa
eλ1x, . . . , xm1−1eλ1x, . . . , eλrx, . . . , xmr−1eλrx.



Feladatok (7× 10 = 70 pont)

1. Végezze el az f(x) = x+ 2
√

1 + x2 függvény teljes függvényvizsgálatát.
Megoldás. Df = R, nem páros, nem páratlan, nem periodikus, zérushelye nincs, mivel f(x) > x+2|x| ≥ |x|.

lim
x→∞

f(x) = lim
x→∞

x

(
1 + 2

√
1
x2 + 1

)
=∞

lim
x→−∞

f(x) = lim
x→∞

x

(
1− 2

√
1
x2 + 1

)
=∞.

A deriváltak

f ′(x) = 1 + 2x√
1 + x2

f ′′(x) =
2
√

1 + x2 − 2x x√
1+x2

1 + x2 = 2
(1 + x2)3/2 ,

f ′ zérushelye − 1√
3 , f

′′ sehol nem nulla. Az előjelek:

(−∞,− 1√
3 − 1√

3 (− 1√
3 ,∞)

f min
f ′ − 0 +
f ′′ + + +

lim
x→∞

f(x)
x

= lim
x→∞

1 + 2
√

1
x2 + 1 = 3

lim
x→∞

f(x)− 3x = lim
x→∞

2√
1 + x2 + x

= 0

lim
x→−∞

f(x)
x

= lim
x→∞

1− 2
√

1
x2 + 1 = −1

lim
x→∞

f(x)− (−1)x = lim
x→∞

2√
1 + x2 − x

= 0,

tehát +∞ irányban y = 3x, −∞ irányban y = −x ferde aszimptota. Rf = [
√

3,∞), grafikon:

−2 −1 1

1
y = 3x

y = −x

2. Számítsa ki az alábbi integrált.∫ 1

0
x3 ln2 xdx



Megoldás. A primitív függvény∫
x3 ln2 xdx = x4

4 ln2 x−
∫
x4

4 2 ln(x) 1
x

dx

= x4

4 ln2 x−
∫
x3

2 ln(x) dx

= x4

4 ln2 x−
(
x4

8 ln x−
∫
x4

8
1
x

dx
)

= x4

4 ln2 x−
(
x4

8 ln x− x4

32

)
= x4

4 ln2 x− x4

8 ln x+ x4

32 ,

az integrál∫ 1

0
x3 ln2 xdx = lim

α→0+

∫ 1

α

x3 ln2 xdx

= lim
α→0+

[
x4

4 ln2 x− x4

8 ln x+ x4

32

]1

α

= 1
32 .

3. Határozza meg a
∞∑
n=0

22n
√
n2 + 1(x− 1)n hatványsor konvergenciatartományát.

Megoldás. Az együtthatók sorozata an = 22n√n2 + 1 (n ∈ N), a konvergenciasugár

1
R

= lim
n→∞

an+1

an
= lim
n→∞

22(n+1)
√

(n+ 1)2 + 1
22n
√
n2 + 1

= lim
n→∞

4

√
(1 + 1

n )2 + 1
n2

1 + 1
n2

= 4

alapján R = 1
4 . A konvergenciaintervallum 1− 1

4 végpontjában a sor

∞∑
n=0

(−1)n
√
n2 + 1,

ami divergens, a 1 + 1
4 végpontban

∞∑
n=0

√
n2 + 1,

ami szintén divergens. A konvergenciatartomány tehát ( 3
4 ,

5
4 )

4. Az a paraméter értékétől függően hány megoldása van a

−3x1 + 3x2 − 2x3 = 3
x1 − 2x2 − 2x3 = −1
−x1 − 3x2 − x3 = a

x1 + ax2 − 2x3 = −1

lineáris egyenletrendszernek?
Megoldás. A kibővített mátrixot sorműveletekkel egyszerűbb alakra hozzuk:

−3 3 −2 3
1 −2 −2 −1
−1 −3 −1 a
1 a −2 −1

 s1↔s2∼


1 −2 −2 −1
−3 3 −2 3
−1 −3 −1 a
1 a −2 −1


s2+3s1
s3+s1
s4−·s1∼


1 −2 −2 −1
0 −3 −8 0
0 −5 −3 a− 1
0 a+ 2 0 0


s2·(−2)∼


1 −2 −2 −1
0 6 16 0
0 −5 −3 a− 1
0 a+ 2 0 0

 s2+s3∼


1 −2 −2 −1
0 1 13 a− 1
0 −5 −3 a− 1
0 a+ 2 0 0

 s3+5s2∼


1 −2 −2 −1
0 1 13 a− 1
0 0 62 6a− 6
0 a+ 2 0 0





Ebből az alakból már leolvashatjuk, hogy az együtthatómátrix rangja a értékétől függetlenül 3. A sor-
műveletek után a 4 × 4 méretű kibővített mátrix determinánsa az első oszlop majd az utolsó sor szerinti
kifejtéssel∣∣∣∣∣∣∣∣

1 −2 −2 −1
0 1 13 a− 1
0 0 62 6a− 6
0 a+ 2 0 0

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 13 a− 1
0 62 6a− 6

a+ 2 0 0

∣∣∣∣∣∣ = (a+ 2)
∣∣∣∣13 a− 1
62 6a− 6

∣∣∣∣
= (a+ 2)(a− 1)

∣∣∣∣13 1
62 6

∣∣∣∣ = 16(a+ 2)(a− 1)

gyökei 1 és −2. Ha a = 1 vagy a = −2, akkor az együtthatómátrix rangja, a kibővített mátrix rangja és az
ismeretlenek száma egyaránt 3, tehát pontosan egy megoldás létezik. Ha viszont a ∈ R \ {−2, 1}, akkor a
kibővített mátrix rangja nagyobb mint az együtthatómátrix rangja, így az egyenletrendszernek nem létezik
megoldása.

5. Határozza meg a 0 ≤ z ≤ 1− x2 + y2, x ≥ 0 egyenlőtlenség-rendszer által meghatározott alakzat tömegkö-
zéppontját.
Megoldás. Hengerkoordinátákat használunk: r(r, φ, z) = r cosφi + r sinφj + zk, a paramétertartomány
0 ≤ r ≤ 1, 0 ≤ z ≤ 1− r2, −π2 ≤ φ ≤

π
2 , a Jacobi-determináns r. A szükséges integrálok∫ 1

0

∫ π/2

−π/2

∫ 1−r2

0
r dz dφ dr = π

∫ 1

0
(r − r3) dr = π

4∫ 1

0

∫ π/2

−π/2

∫ 1−r2

0
r cos(φ)r dz dφ dr = [sinφ]π/2

φ=−π/2

∫ 1

0
(r2 − r4) dr = 4

15∫ 1

0

∫ π/2

−π/2

∫ 1−r2

0
r sin(φ)r dz dφ dr = 0∫ 1

0

∫ π/2

−π/2

∫ 1−r2

0
zr dz dφ dr = π

∫ 1

0
r

(1− r2)2

2 dr = π

12 ,

a tömegközéppont helye ( 16
15π , 0,

1
3 ).

6. Oldja meg az
√

1 + x2y′ = (1 + x) cos2 y differenciálegyenletet y(0) = −π4 kezdeti feltétel mellett.
Megoldás. Az egyenlet szétválasztható:

y′

cos2 y
= 1 + x√

1 + x2
,

mindkét oldalt integrálva

tan y(x) =
∫ ( 1√

1 + x2 + x√
1+x2

)
dx = arsinh x+

√
1 + x2 + C

adódik, azaz y(x) = arctan
(
arsinh x+

√
1 + x2 + C

)
. A kezdeti feltételből

C = tan y(0)− arsinh 0−
√

1 + 02 = −1− 1 = −2.

7. Oldja meg a 4x3 − 6xy + (−3x2 + 2y)y′ = 0 differenciálegyenletet y(1) = −1 kezdeti feltétel mellett.
Megoldás. Az egyenlet P (x, y) +Q(x, y)y′ = 0 alakú, P (x, y) = 4x3 − 6xy, Q(x, y) = −3x2 + 2y,

∂P (x, y)
∂y

= −6x = ∂Q(x, y)
∂x

,

tehát egzakt. Egy potenciálfüggvény

u(x, y) =
∫ x

0
P (ξ, 0) dξ +

∫ y

0
Q(x, η) dη =

∫ x

0
4ξ3 dξ +

∫ y

0
(−3x2 + 2η) dη = x4 − 3x2y + y2,

az általános megoldás implicit alakban u(x, y(x)) = C, explicit alakban

y(x) = 3
2x

2 ±
√

5x4 + 4C
2 ,

a kezdeti feltétel alapján C = 5 és a két előjel közül a negatív adja a megfelelő ágat.


