
Matematika szigorlat G – 2026. január 29.

Elmélet (10× 3 = 30 pont)

1. Fejezze ki az a+ bi komplex szám trigonometrikus alakját a és b segítségével, ha a < 0, b ∈ R.
Megoldás. r(cosϕ+ iϕ), ahol r =

√
a2 + b2, ϕ = π + arctan b

a .
2. Mondja ki a Bolzano-tételt.

Megoldás. Ha f : [a, b] → R folytonos függvény, akkor minden y ∈ [f(a), f(b)]-hez létezik x ∈ [a, b], amire
f(x) = y.

3. Hogyan jellemezhető egy egyszer differenciálható függvény konvexitása az első derivált segítségével?
Megoldás. Egy f : (a, b)→ R differenciálható függvény pontosan akkor konvex, ha f ′ monoton nő.

4. Mit értünk egy hatványsor konvergenciasugara alatt? Adjon példát olyan hatványsorra, amelynek a kon-
vergenciasugara 1 és az x = 1 és x = 3 pontokban is konvergens.
Megoldás. Egy x0 középpontú hatványsor konvergenciasugara R, ha |x − x0| < R esetén konvergens, |x −
x0| > R esetén divergens. A feltétel szerinti hatványsornak csak x0 = 2 lehet a középpontja, és ilyen létezik

is, pl.
∞∑
n=0

1
n2 (x− 2)n

5. Mikor van az Ax = b lineáris egyenletrendszernek 0, 1 illetve végtelen sok megoldása? Adjon feltételt az
együtthatómátrix és a kibővített mátrix rangja segítségével.
Megoldás. Akkor létezik megoldás, ha az együtthatómátrix és a kibővített mátrix rangja megegyezik. A
megoldás akkor egyértelmű, ha ez a közös rang megegyezik az ismeretlenek számával.

6. Adjon elégséges feltételt arra, hogy az f(x, y) kétszer differenciálható kétváltozós függvénynek az (x0, y0)
pontban lokális szélsőértéke legyen.

Megoldás. Ha f ′x(x0, y0) = f ′y(x0, y0) = 0 és
∣∣∣∣f ′′xx(x0, y0) f ′′yx(x0, y0)
f ′′xy(x0, y0) f ′′yy(x0, y0)

∣∣∣∣ > 0, akkor az (x0, y0) pontban lokális

szélsőérték van.
7. Hogyan lehet kiszámítani az r : [a, b] → R3 folytonosan differenciálható függvénnyel megadott térgörbe

ívhosszát?

Megoldás.
∫ b

a

|ṙ(t)|dt.

8. Mondja ki a vonalmenti integrálra vonatkozó Newton-Leibniz-tételt.
Megoldás. Ha v (skalár-)potenciálos vektormező, egy potenciálja u, és r : [a, b] → R3 térgörbe, akkor v
integrálja a görbe mentén u(r(b))− u(r(a)).

9. Mondja ki a Cauchy–Peano-féle egzisztenciatételt.
Megoldás. Ha D ⊆ R× Rn és f : D → Rn folytonos, akkor az y′ = f(x,y) differenciálegyenletnek bármely
(x0,y0) ∈ D esetén létezik az y(x0) = y0 kezdeti feltételt kielégítő lokális megoldása.

10. Mit értünk egzakt differenciálegyenlet alatt?
Megoldás. Egy P (x, y) +Q(x, y)y′ = 0 alakú differenciálegyenlet egzakt D ⊆ R2-en, ha létezik u : D → R,
amire P (x, y) = ∂

∂xu(x, y) és Q(x, y) = ∂
∂yu(x, y) teljesül. (Lokálisan ezzel ekvivalens: P ′y = Q′x.)



Feladatok (7× 10 = 70 pont)

1. Számítsa ki az alábbi sorozatok határértékét.

an =
√
n+
√
n−

√
n−
√
n

bn =
(

3n+ 6
3n+ 2

)5n−7

Megoldás.

lim
n→∞

an = lim
n→∞

√
n+
√
n−

√
n−
√
n

= lim
n→∞

n+
√
n− (n−

√
n)√

n+
√
n+

√
n−
√
n

= lim
n→∞

2√
1 + 1√

n
+
√

1− 1√
n

= 1

lim
n→∞

bn = lim
n→∞

(
3n+ 6
3n+ 2

)5n−7

= lim
n→∞

[(
1 + 4

3n+ 2

)3n+2
] 5n−7

3n+2

= e4· 53 = e
20
3

2. Számítsa ki az alábbi integrált.∫
e3x

e2x + 1 dx

Megoldás. ex = t, x = ln t, dx = 1
t dt helyettesítést alkalmazunk:∫

e3x

e2x + 1 dx =
∫

t3

t2 + 1
1
t

dt

=
∫ (

1− 1
t2 + 1

)
dt

= t− arctan t
= ex − arctan ex + C.

3. Határozza meg a
∞∑
n=0

n(n+ 1)
2n sor összegét.

Megoldás. Ha |x| < 1, akkor

d2

dx2
1

1− x = d2

dx2

∞∑
n=0

xn

= d
dx

∞∑
n=0

nxn−1

=
∞∑
n=0

n(n− 1)xn−2

=
∞∑
n=0

n(n+ 1)xn−1,

tehát
∞∑
n=0

n(n+ 1)xn = x
d2

dx2
1

1− x = 2x
(1− x)3 .

A keresett numerikus sor x = 1
2 helyettesítéssel adódik:

∞∑
n=0

n(n+ 1)
2n =

2 · 1
2(

1− 1
2
)3 = 8.



4. Határozza meg az

f(x) =
{
π
2 − |x| ha x ∈ [−π/2, π/2]
0 ha x ∈ [−π,−π/2] vagy x ∈ [π/2, π]

függvény 2π szerint periodikus kiterjesztésének Fourier-sorát.
Megoldás. f páros, emiatt a sin(nx) tagok eltűnnek. A megmaradó együtthatókat a következő integrálokból
kapjuk:

a0 = 1
2π

∫ π

−π
f(x) dx = 1

π

∫ π/2

0

(π
2 − x

)
dx = 1

π

[
π

2 x−
x2

2

]π/2

0
= π

8

an = 1
π

∫ π

−π
f(x) dx

= 2
π

∫ π/2

0

(π
2 − x

)
cos(nx) dx

= 2
π

[(π
2 − x

) sin(nx)
n

]π/2

0
− 2
π

∫ π/2

0
(−1)sin(nx)

n
dx

= 2
π

[(π
2 − x

) sin(nx)
n

− cos(nx)
n2

]π/2

0

= 2
π

1
n2

(
1− cos nπ2

)
=


2
π

1
n2 ha n páratlan

0 ha n osztható 4-gyel
4
π

1
n2 ha n = 4k + 2, k ∈ N

A Fourier-sor tehát

π

8 + 2
π

∞∑
k=0

(
1

(4k + 1)2 cos(4k + 1)x+ 2
(4k + 2)2 cos(4k + 2)x+ 1

(4k + 3)2 cos(4k + 3)x
)
.

5. Hol van a tömegközéppontja az x2 +y2 +z2 = 1 egyenletű felület x ≥ 0, y ≥ 0 egyenlőtlenségek által kijelölt
darabjának?
Megoldás. Az alakzat egy gömbfelület darabja, a szokásos paraméterezés r(ϑ, ϕ) = sinϑ cosϕi+sinϑ sinϕj+
cosϑk, a paramétertartomány ϑ ∈ [0, π], ϕ ∈ [0, π/2], a normálvektor abszolútértéke∣∣∣∣ ∂r

∂ϑ
× ∂r
∂ϕ

∣∣∣∣ = |(cosϑ cosϕi+cosϑ sinϕj−sinϑk)×(− sinϑ sinϕi+sinϑ cosϕj)| = |sin(ϑ)r(ϑ, ϕ)| = sinϑ.

A szükséges integrálok∫ π

0

∫ π/2

0
sinϑ dϕdϑ = π

2

∫ π

0
sinϑ dϑ = π∫ π

0

∫ π/2

0
sin2 ϑ cosϕdϕdϑ =

∫ π

0
sin2 ϑdϑ

∫ π/2

0
cosϕdϕ = π

2∫ π

0

∫ π/2

0
sin2 ϑ sinϕdϕdϑ =

∫ π

0
sin2 ϑdϑ

∫ π/2

0
sinϕdϕ = π

2∫ π

0

∫ π/2

0
sinϑ cosϑ dϕdϑ = π

2

∫ π

0

sin 2ϑ
2 dϑ = 0,

a tömegközéppont helye ( 1
2 ,

1
2 , 0).

6. Integrálja az u(x, y, z) = x3i + xy2j + zx2k vektormezőt az origó középpontú 2 sugarú gömbfelületen kifelé
mutató irányítás mellett.
Megoldás. A vektormezőt zárt felületen integráljuk, alkalmazhatjuk a Gauss–Osztrogradszkij-tételt.

div u(x, y, z) = 3x2 + 2xy + x2 = 4x2 + 2xy,



gömbi koordinátákat használunk: r(r, ϑ, ϕ) = r sinϑ cosϕi + sinϑ sinϕj + cosϑk, a paramétertartomány
r ∈ [0, 2], ϑ ∈ [0, π], ϕ ∈ [0, 2π], a Jacobi-determináns r2 sinϑ. Az integrál∫∫

∂V

u · dA =
∫∫∫

V

div u dV

=
∫ 2

0

∫ π

0

∫ 2π

0

(
4r2 sin2 ϑ cos2 ϕ+ 2r2 sin2 ϑ cosϕ sinϕ

)
r2 sinϑdϕdϑdr

= 4
∫ 2

0
r4 dr

∫ π

0
sin3 ϑ dϑ

∫ 2π

0
cos2 ϕdϕ

= 425

5

∫ π

0
(sinϑ− cos2 ϑ sinϑ) dϑπ

= 128π
5

[
− cosϑ+ cos3 ϑ

3

]π
0

= 128π
5

4
3 = 512π

15 .

7. Határozza meg az y′′ + 4y′ + 3y = e−3x differenciálegyenlet y(0) = 1, y′(0) = 0 kezdeti feltételt kielégítő
megoldását.
Megoldás. Az egyenlet inhomogén állandó együtthatós lineáris, először a hozzá tartozó homogén egyenletet
oldjuk meg. A karakterisztikus polinom λ2 + 4λ+ 3 = (λ+ 3)(λ+ 1), tehát a gyökök −3 és −1. A homogén
egyenlet általános megoldása Ae−3x +Be−x.
Az inhomogén tag polinomszor exponenciális, külső rezonancia van, az inhomogén egyenlet egy megoldását
kereshetjük y(x) = Cxe−3x alakban. A deriváltak

y′(x) = Ce−3x − 3Cxe−3x

y′′(x) = −6Ce−3x + 9Cxe−3x,

az egyenletbe behelyettesítve

−6Ce−3x + 9Cxe−3x + 4(Ce−3x − 3Cxe−3x) + 3Cxe−3x = −2Ce−3x = e−3x

adódik. Ez akkor teljesül minden x-re, ha C = − 1
2 , tehát az inhomogén egyenlet általános megoldása és

deriváltja

y(x) = −1
2xe

−3x +Ae−3x +Be−x

y′(x) = −1
2e
−3x + 3

2xe
−3x − 3Ae−3x −Be−x,

a kezdeti feltétel alapján

1 = y(0) = A+B

0 = y′(0) = −1
2 − 3A−B.

Az egyenletrendszer megoldása A = − 3
4 , B = 7

4 , a keresett megoldás y(x) = − 1
2xe
−3x − 3

4e
−3x + 7

4e
−x.


