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1 Convexity

1.1 Affine space

We will regard Rn as a Euclidean space with the inner product 〈x, y〉 = x1y1+ · · ·+xnyn,
which induces the (Euclidean) norm ‖v‖ =

√
〈v, v〉. The Euclidean affine space is the

affine space over Rn. If we choose a point o in the affine space, then the points can be
identified by their position vectors: the point p corresponds to the unique vector v that
satisfies p = o+ x. In this case we refer to the chosen point as the origin.

The distance of a pair of points p and q is dist(p, q) = ‖q − p‖. The Euclidean affine
space with dist is a metric space. The interior, boundary, closure and cardinality of a
set X ⊆ Rn will be denoted by int(X),bd(X), cl(X), |X|, respectively.

Definition 1.1. The Minkowski sum of two subsets X1, X2 ⊆ Rn is the set

{x1 + x2|x1 ∈ X1, x2 ∈ X2} .

The multiple of a subset X ⊆ Rn by λ ∈ R is the set {λx|x ∈ X}.

It should be noted that both the Minkowski sum and the multiple depend on the
origin, since the operations are defined at the vector space level. However, choosing a
different origin only affects the results by a translation. Moreover, certain combinations
such as 1

2X1 + 1
2X2 do not depend on the origin.

Definition 1.2 (affine subspace, dimension). An affine subspace of Rn is a subset of
the form p + L, where p ∈ Rn and L ⊆ Rn is a linear subspace. The dimension of the
affine subspace p+L is dimL. Affine subspaces of dimension 1, 2, n− 1 are called lines,
planes, and hyperplanes, respectively.

Remark 1.3. If p, p′ ∈ Rn and L,L′ ≤ Rn are linear subspaces, then p+L = p′+L′ iff
p− p′ ∈ L = L′.

Let u ∈ Rn be a nonzero vector and t ∈ R, and consider the sets

H+ = {v ∈ Rn|〈v, u〉 > t}
H0 = {v ∈ Rn|〈v, u〉 = t}
H− = {v ∈ Rn|〈v, u〉 < t} .

Then H0 is a hyperplane, H+ and H− are the two open half spaces determined by H0,
and H0∪H+ and H0∪H− are the two closed half spaces. The boundary of each of these
half spaces is H0. u is a normal vector of H0 and also an outer (inner) normal vector of
H− (H+).

Definition 1.4. Let G1 = p1 + L1 and G2 = p2 + L2 be affine subspaces of Rn. G1

and G2 are perpendicular (or orthogonal) if for all vectors v1 ∈ L1 and v2 ∈ L2 we have
〈v1, v2〉 = 0. G1 and G2 are parallel if L1 = L2.

Proposition 1.5. A nonempty intersection of affine subspaces is an affine subspace.
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Definition 1.6. Let X ⊆ Rn. The affine hull of X is the intersection of all affine
subspaces that contain X. The affine hull of X is denoted by aff(X). The linear hull is
lin(X) = aff(X ∪ {o}).

Considering X as a subspace of aff(X) (which in turn inherits its topology from Rn),
we define the relative interior and relative boundary of X as the interior and boundary
in aff(X). We use the notations relint(X) and relbd(X).

Definition 1.7. A set X ⊆ Rn is affinely independent if for all x ∈ X we have aff(X \
{x}) 6= aff(X). If X is not affinely independent, then we say that it is affinely dependent.

Definition 1.8. Let p1, p2, . . . , pk ∈ Rn and λ1, λ2, . . . , λk ∈ R such that
∑k

i=1 λi = 1.

Then the point
∑k

i=1 λipi is the affine combination of the points p1, p2, . . . , pk with
coefficients λ1, λ2, . . . , λk.

Proposition 1.9. The affine hull of X is the set of all affine combinations of finite
subsets of X.

Corollary 1.10. X is affinely independent if and only if no point x ∈ X can be written
as an affine combination of some other points from X.

Theorem 1.11. Let X = {p1, . . . , pk} ⊂ Rn. Then X is affinely independent if and

only if
k∑

i=1
λipi = 0 and

k∑
i=1

λi = 0 implies λi = 0 for all values of i.

Corollary 1.12. If X ⊂ Rn is affinely independent, then every point of aff(X) can be
uniquely written as an affine combination of some points in X.

Theorem 1.13. If X ⊆ Rn and |X| ≥ n+ 2, then X is affinely dependent.

Corollary 1.14. Every affine subspace of the space Rn is the affine hull of a most n+ 1
points.

Example 1.15. The standard unit vectors and o form an affinely independent set of
n+ 1 points in Rn.

1.2 Convex sets

Definition 1.16. Let p1, p2, . . . , pk ∈ Rn and λ1, λ2, . . . , λk ∈ R such that
∑k

i=1 λi = 1

and λi ≥ 0 for all i. Then the point
∑k

i=1 λipi is the convex combination of the points
p1, p2, . . . , pk with coefficients λ1, λ2, . . . , λk.

The set of all convex combinations of the points p, q ∈ Rn is the closed segment with
endpoints p and q, denoted by [p, q]. If p 6= q, then (p, q) = [p, q] \ {p, q} is the open
segment with endpoints p and q.

Definition 1.17. Let K ⊆ Rn. The set K is called convex, if for arbitrary p, q ∈ K we
have [p, q] ⊆ K.

Remark 1.18. The intersection of a family of convex sets is convex.
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Definition 1.19. Let X ⊆ Rn. The convex hull of X is the intersection of all convex
sets that contain X. The convex hull of X is denoted by conv(X).

Theorem 1.20. Let K ⊆ Rn be a closed convex set. Then K is equal to the intersection
of the closed half spaces that contain K.

Remark 1.21. The closure of a convex set is convex.

Corollary 1.22. If K is convex and x ∈ bd(K), then there exists a hyperplane H such
that x ∈ H and K is a subset of one of the closed half spaces bounded by H.

Definition 1.23. Let K ⊆ Rn be a convex set. If H is a closed half space satisfying
K ⊆ H and whose boundary intersects the boundary of K, we say that H is a supporting
half space of K, and the boundary of H is a supporting hyperplane of K.

Theorem 1.24. The convex hull of X is the set of all convex combinations of finite
subsets of X.

Definition 1.25. The convex hulls of k-element subsets of Rn with k ≤ n+ 1 are called
simplices. If the point set is affinely independent, we call the simplex nondegenerate.
Then the elements of the point set are the vertices of the nondegenerate simplex, and
the convex hull of two vertices is an edge of the simplex. If k = n+ 1, then the convex
hull of n vertices is a facet of the simplex. If all edges of a nondegenerate simplex are of
equal length, we call the simplex regular.

Example 1.26. The convex hull of the standard unit vectors in Rn+1 is an n-dimensional
regular simplex.

Proposition 1.27. Let H be a closed half space bounded by the hyperplane H0, and let
X ⊂ H be arbitrary. Then conv(X) ∩H0 = conv(X ∩H0).

We continue with the fundamental theorems of convex geometry.

Theorem 1.28 (Radon). Let X ⊂ Rn be a set containing at least n + 2 points. Then
X can be decomposed into two parts whose convex hulls have a nonempty intersection.

Theorem 1.29 (Carathéodory). Let X ⊂ Rn be a nonempty set. If p ∈ conv(X), then
X has a subset Y consisting of at most n+ 1 points, satisfying p ∈ conv(Y ).

Theorem 1.30 (colorful Carathéodory theorem). Let X1, X2, . . . , Xn+1 ⊂ Rn be com-
pact subsets. Assume that for any i we have o ∈ convXi. Then there exist points pi ∈ Xi

such that o is contained in conv{p1, p2, . . . , pn+1}.

In the theorem, Xi denotes the set of points with ‘color i’. Thus, the statement
guarantees that there is a ‘rainbow simplex’ containing the origin.

Theorem 1.31 (Helly, finite). Let K be a finite family of at least n + 1 convex sets in
Rn. If any (n+ 1) elements of K have a nonempty intersection, then all elements of K
have a nonempty intersection.
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Theorem 1.32 (Helly, infinite). Let K be a family of at least n+ 1 closed, convex sets
in Rn such that at least one member of K is compact. Assume that any n+ 1 elements
of K have a nonempty intersection. Then there is a point which is contained in every
element of K.

The following statement can be proved using Carathéodory’s theoremCarathéodory’s theorem.

Theorem 1.33. Let H ⊂ Rn be compact. Then conv(H) is also compact.

Exercise 1.1. What are the possible intersections of two planes in R4?

Exercise 1.2. Let K be a convex set and L a line such that L ∩ intK 6= ∅. What are
the possible cardinalities of L ∩ bdK?

Exercise 1.3. Show that the interior of a convex set is convex.

Exercise 1.4. Which of the following properties are preserved by conv?

(i) finite

(ii) bounded

(iii) closed

(iv) open

Exercise 1.5. Prove that for arbitrary subsets X,Y ⊆ Rn the equality conv(X + Y ) =
conv(X) + conv(Y ) holds.

Exercise 1.6. Define the map I : 2R
n → 2R

n
as I(X) =

⋃
x,y∈X [x, y]. Prove that

Idlog2(n+1)e(X) = convX.

Exercise 1.7. Can the n+ 1 be improved to n in Helly’s theoremHelly’s theorem?

Exercise 1.8. Show by examples that the conditions in the infinite versioninfinite version of Helly’s
theorem are necessary: the implication may fail if the sets are not closed or there is no
compact member.

Exercise 1.9. Given a Borel probability measure µ on Rn, a point x ∈ Rn is a center-
point if every closed half space that contains x has measure at least 1

n+1 . Prove that
every Borel probability measure has at least one centerpoint.

2 Convex polytopes

2.1 Polytopes and polyhedral sets

Consider a convex polygon in the plane (Figure 11), and let its vertices in cyclic order
be x1, . . . , xn. Then the segments [x1, x2], [x2, x3], . . . , [xn−1, xn], [xn, x1] are its edges,

5



and each edge determines a half plane that contains the polygon and whose boundary
contains the edge. The polygon is the intersection of these half planes. In particular,
while a general convex closed set in R2 is the intersection of closed half planes, a convex
polygon is the intersection of finitely many closed half planes.

x1

x2

x3

x4

x5

x6

P

Figure 1: A convex polygon.

These two dual descriptions of convex polygons suggest two possible generalizations
to higher dimensional spaces: convex hulls of finite sets of points and intersections of
finitely many closed half spaces. These two classes of convex sets are not the same
even in the plane, since the convex hull of finitely many points is bounded, while the
intersection of finitely many half planes (e.g., of just one or even zero of them) can be
unbounded. But this is the only difference: any bounded set that can be written as the
intersection of finitely many closed half-planes is indeed a polygon.

In the following we study the generalizations of both descriptions to higher dimen-
sions. We consider both the bounded and the unbounded versions. For the unbounded
case we will use the concept of a cone.

Definition 2.1. A set of vectors C ⊆ Rd is a cone if 0 ∈ C, C + C ⊆ C and for all
λ ≥ 0 we have λ · C ⊆ C.

In other words, any linear combination of vectors from C with nonnegative coeffi-
cients is also in C.

Definition 2.2. The conical hull of a set Y ⊆ Rd is the intersection of all cones in Rd

that contain Y . The conical hull of Y is denoted by cone(Y )

The situation is similar to that of linear, affine, and convex hulls: the conical hull
is a cone, and it can be shown that cone(Y ) is the set of linear combinations of vectors
from Y with nonnegative coefficients.

Definition 2.3. An H-polyhedral set in Rd is the intersection of finitely many closed
half-spaces. An H-polytope is a bounded H-polyhedral set.
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A V-polytope in Rd is the convex hull of finitely many points. A V-polyhedral set is a
set of the form P = conv(V )+cone(Y ) where |V | <∞ and |Y | <∞, i.e., the Minkowski
sum of a V-polytope and the conical hull of a finite set of vectors.

By definition, an H-polyhedral set is bounded if and only if it is an H-polytope.

Proposition 2.4. An V-polyhedral set is bounded if and only if it is a V-polytope.

Proof. A V-polytope is bounded and every V-polytope is a V-polyhedral set (take Y = ∅
in the definition), therefore we only need to show that a bounded V-polyhedral set is a
V-polytope.

Let P = conv(V ) + cone(Y ) be bounded. If V is empty, then P is also empty,
therefore it is a V-polytope. Otherwise cone(Y ) must be bounded, since it is a subset of
P + (−1) · conv(V ). But then Y = {0}, otherwise it would contain some y 6= 0 and λy
for all λ ≥ 0, an unbounded subset.

Theorem 2.5. Let P ⊆ Rd be a subset. Then

(i) P is a V-polyhedral set if and only if it is an H-polyhedral set.

(ii) P is a V-polytope if and only if it is an H-polytope.

By the above theorem, from a mathematical point of view, V-polyhedral sets and
H-polyhedral sets are the same classes of subsets of Rd, and likewise V-polytopes and
H-polytopes are the same. In alignment with the usual terminology, we will call such
sets polytopes and polyhedral sets, respectively.

It is useful to have both kinds of characterizations, because statements about poly-
topes and polyhedral sets such as

(i) The intersection of a polytope and a polyhedral set is a polytope. (H)

(ii) The Minkowski sum of two polytopes is a polytope. (V)

(iii) Every projection of polytope is a polytope. (V)

can be much easier to prove using one or the other.
On the other hand, from a computational perspective, it is useful to distinguish

between these concepts. If we think of a polyhedral set as the input or output of an
algorithm, then it makes a difference in terms of complexity whether it is described as a
convex hull of a finite set of points of the intersection of a finite set of half-spaces. One
reason is that the complexity is usually measured as a function of the input size (which
can be very different depending on the description), but also the “work” required to
solve a problem can be very different.

As an example, consider maximizing a given linear functional over a polytope. If the
polytope is specifed as a convex hull of a finite set of points, then the task is to evaluate
the functional at these points and find the largest value obtained. On the other hand,
maximizing a linear functional on the intersection of finitely many half spaces is the
same as maximization subject to linear constraints, the topic of linear programming.

We list some of the most common polyhedral sets.
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Example 2.6.

(i) Every simplex (Definition 1.251.25) is a polytope.

(ii) The d-dimensional cube [−1, 1]d ⊆ Rd is a polytope.

(iii) The cross polytope is the convex hull of the points ±e1,±e2, . . . ,±ed, where e1, . . . , ed
are the standard basis vectors. As the name suggests, the cross polytope is a poly-
tope.

(iv) The nonnegative orthant is the set {(x1, x2, . . . , xd)|x1 ≥ 0, x2 ≥ 0, . . . , ed ≥ 0}.
The nonnegative orthant is a polyhedral set (and also a cone).

Recall that a supporting hyperplane of a convex set K is a hyperplane H that bounds
a half space H+ such that K ⊆ H+ and K ∩H 6= ∅.

Definition 2.7. Let K ⊆ Rd be a closed, convex set. A face of K is

(i) the intersection of K with a supporting hyperplane, or

(ii) K itself, or

(iii) the empty set.

The dimension of a face is the dimension of its affine hull. A face of dimension j is
also called a j-face. Special names are in use for faces of certain dimensions: a 0-face is
a vertex, a 1-face is an edge, and if dimK = d, then a (d− 1)-face is a facet.

Theorem 2.8. Let P ⊆ Rd be a polytope, and let V be the set of its vertices. Then

(i) P = conv(V ).

(ii) If F is a face of P , then F is a polytope and the set of its vertices is F ∩ V .

(iii) If F1 and F2 are faces of P , then F1 ∩ F2 is a face of P as well.

(iv) The faces of F are the faces of P that are contained in F

Lemma 2.9. Let P ⊂ Rd be a d-dimensional polytope and let x ∈ bd(P ) be arbitrary.
Then there is a unique face of P containing x in its relative interior.

Exercise 2.1. A convex subset of Rn is called locally polyhedral (also known as quasi-
polyhedral or boundedly polyhedral), if its intersection with every polytope is a polytope
(possibly empty). Given an example of a locally polyhedral set in R2 which is not
polyhedral.

Exercise 2.2. The standard d-simplex is the convex hull of the d + 1 standard unit
vectors in Rd+1. Express it as the intersection of finitely many half spaces.

Exercise 2.3. Describe the cube [−1, 1]d as a V-polytope and as an H-polytope.
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Exercise 2.4. Describe the cross polytope as a V-polytope and as an H-polytope.

2.2 Euler characteristic

Definition 2.10. The indicator function of a subset A ⊆ Rd is the function I[A] defined
as

I[A](x) =

{
1 if x ∈ A,

0 if x /∈ A.

It follows direcly from the definition that I[A] · I[B] = I[A ∩B] for all A,B ⊆ Rd.

Lemma 2.11 (Inclusion-exclusion formula). For any sets A1, A2, . . . , An ⊂ Rd,

I[A1 ∪A2 ∪ . . . ∪An] = 1− (1− I[A1])(1− I[A2]) . . . (1− I[An])

=

n∑
j=1

(−1)j−1

∑
1≤i1<i2<...<ij≤n

I[Ai1 ∩Ai2 ∩ . . . ∩Aij ].

Proof. Introducing the notation B = Rd \ B for any set B ⊆ Rd, the first statement is
equivalent to the equality

A1 ∪A2 ∪ . . . ∪An = A1 ∩A2 ∩ . . . An,

which readily follows from the de Morgan identities. The second statement is a conse-
quence of the previous remark.

Definition 2.12. The real vector space generated by the indicator functions I[A] of
the compact, convex sets A ⊂ Rd is called the algebra of compact, convex sets, and is
denoted by K(Rd). The real vector space generated by the indicator functions I[A] of
the closed, convex sets A ⊂ Rd is called the algebra of closed, convex sets, and is denoted
by C(Rd).

Remark 2.13. An arbitrary element of K(Rd) can be written as
∑n

i=1 αiI[Ai], where
αi ∈ R, and the sets Ai ⊂ Rd are compact and convex. Observe that if A,B ⊂ Rn are
compact, convex sets, then A ∩B is also compact and convex, implying that the product
of two elements of K(Rd) is also an element of K(Rd). Thus, the set K(Rd) is indeed an
algebra over R. A similar observation can be made about the algebra C(Rd).

Definition 2.14. A linear map K(Rd)→ R or C(Rd)→ R is called a valuation.

Theorem 2.15. There is a unique valuation χ : C(Rd) → R satisfying χ(I[A]) = 1 for
all nonempty, closed, convex sets A ⊂ Rd.

This valuation is called the Euler characteristic induced on the algebra of closed,
convex sets. Theorem 2.152.15 was first proved by H. Hadwiger.

The following lemma is a consequence of Lemma 2.112.11 and Theorem 2.152.15.
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Lemma 2.16. Let A1, A2, . . . , An ⊂ Rd be sets such that I[Ai] ∈ K(Rd) for any i =
1, 2, . . . , n. Then

χ(A1 ∪A2 ∪ . . . ∪An) =
n∑

j=1

(−1)j−1
∑

1≤i1<i2<...<ij≤n
χ(Ai1 ∩Ai2 ∩ . . . ∩Aij ).

Lemma 2.17. Let P ⊂ Rd be a d-dimensional (convex) polytope. Then

χ(bdP ) = 1 + (−1)d−1, and χ(intP ) = (−1)d.

Given a d-dimensional polytope P , let fj(P ) denote the number of j-faces of P .

Theorem 2.18 (Euler’s formula). Let P ⊂ Rd be a d-dimensional convex polytope.
Then

d−1∑
i=0

(−1)ifi(P ) = 1 + (−1)d−1.

Proof. Lemma 2.92.9 implies that I[P ] =
∑

F I[relintF ], where the summation is taken
over all nonempty faces of P , and P itself. Applying the valuation χ to both sides of
this equation, the statement follows from Lemma 2.172.17.

Exercise 2.5. Consider the five Platonic solids (tetrahedron, cube, octahedron, dodec-
ahedron, icosahedron), and for each of them, let W be the union of its edges. Find the
value of χ(W ).

Exercise 2.6. A Goldberg polyhedron is a convex 3-dimensional polytope such that each
facet is either a pentagon or a hexagon, three facets meet at each vertex, and the polytope
has rotational icosahedral symmetry. What is the number of pentagonal facets?

2.3 Face lattice

Recall that a partially ordered set is a set equipped with a binary relation that is reflexive,
transitive, and antisymmetric. In the following we consider the partially ordered set of
faces of a convex polytope, ordered by inclusion.

Definition 2.19. Let P ⊂ Rd be a d-dimensional convex polytope. We define the
partially ordered set F(P ) as the set of the faces of P ordered by inclusion.

It turns out that F(P ) has a number of special order-theoretic properties, which we
first define in the context of general partially ordered sets.

Definition 2.20. Let (A,≤) be a partially ordered set.

(i) The join (or supremum) of a subset S ⊆ A is an element j ∈ A such that a ≤ j
for all a ∈ S and if j′ ∈ A satisfies a ≤ j′ for all a ∈ S, then also j ≤ j′.
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(ii) The meet (or infimum) of a subset S ⊆ A is an element m ∈ A such that m ≤ a
for all a ∈ S and if m′ ∈ A satisfies m′ ≤ a for all a ∈ S, then also m′ ≤ m.

(iii) (A,≤) is a lattice (in the algebraic sense) if every subset of at most two elements
has a join and a meet.

(iv) The opposite partially ordered set (A,≤)op is the same underlying set equipped
with the reversed order relation, i.e., a ≤op b if and only if b ≤ a.

In a lattice, every finite subset has a join and a meet, and they are unique. The join
and the meet operations are dual in the sense that the join of a subset in the opposite
partially ordered set is the meet of the same subset in the original partially ordered set.
It follows that the opposite of a lattice is a lattice as well.

Definition 2.21. Let (A,≤) be a partially ordered set.

(i) If a, b ∈ A, then we say that b covers a if a ≤ b, a 6= b, and for every c ∈ A
satisfying a ≤ c ≤ b, we have either a = c or b = c.

(ii) ρ : A → N is a rank function if for all a, b ∈ A, a ≤ b implies ρ(a) ≤ ρ(b), and
if b covers a, then ρ(a) + 1 = ρ(b). A partially ordered set equipped with a rank
function is called graded.

(iii) A minimum is an element 0 ∈ A such that for all a ∈ A the relation 0 ≤ a holds.

(iv) A maximum is an element 1 ∈ A such that for all a ∈ A the relation a ≤ 1 holds.

(v) Suppose that a minimum in (A,≤) exists. An element a ∈ A is an atom if a covers
0.

(vi) Suppose that (A,≤) is a lattice and has a minimum. (A,≤) is atomic if for every
b ∈ A \ {0} there exists an atom a such that a ≤ b.

(vii) Suppose that (A,≤) is a lattice and has a minimum. (A,≤) is atomistic if every
element is the supremum of some atoms in A.

A bounded (one having both a minimum and a maximum) partially ordered set has
a rank function if and only if all maximal chains (totally ordered subsets) have the same
size. The rank function is unique if we require ρ(0) = 0.

Theorem 2.22. For a convex polytope P , consider the partially ordered set F(P ). Then

(i) F(P ) is a lattice.

(ii) F(P ) is atomic and atomistic. Its atoms are the vertices of P .

(iii) F(P ) is bounded. The minimum is ∅ and the maximum is P .

(iv) The function ρ : F(P ) → N given by ρ(F ) = dim(F ) + 1 is a rank function
satisfying ρ(∅) = 0 (recall the convention dim(∅) = −1).
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We call F(P ) the face lattice of P .

Example 2.23. Let V be the set of vertices of a d-dimensional simplex. Then |V | = d+1
and for each subset S of V there is a unique face F such that F ∩ V = S. This provides
an order-preserving bijection between the face lattice and the Boolean lattice of subsets
of V .

Definition 2.24. Let P,Q ⊆ Rd be polytopes. We say that

(i) P and Q are combinatorially equivalent if their face lattices are isomorphic,

(ii) P and Q are dual polytopes if F(P )op is isomorphic to F(Q).

Thus, the study of face lattices of polytopes is the study of polytopes up to combi-
natorial equivalence.

Theorem 2.25. Every polytope has a dual polytope.

In particular, F(P )op is also atomic and atomistic for every polytope P , i.e., every
face F is the intersection of the facets that contain F .

Next we study the size of the face lattice. As a graded partially ordered set, we can
refine this to the sizes of rank levels. Recall that fj(P ) denotes the number of j-faces of
the convex polytope P .

Definition 2.26. The f -vector of the convex polytope P is the vector

f(P ) = (f0(P ), f1(P ), . . . , fd(P )).

We will be interested in constraints on f(P ) depending on f0(P ) =: n, the number
of vertices, in particular the maximum of fj(P ) over all polytopes with n vertices. For
d = 2, P is a convex polygon, therefore f(P ) = (n, n, 1) for some n ≥ 3. For d = 3,
it is known that f1(P ) ≤ 3n − 6 and f2(P ) ≤ 2n − 4, and equality holds if every face
is a triangle (use 3f2(P ) ≤ 2f1(P ) and Euler’s formulaEuler’s formula 2 = f0(P ) − f1(P ) + f2(P )).
However, when d ≥ 4, the number of faces can be superlinear in n.

Exercise 2.7. Describe the face lattice of the d-dimensional simplex.

Exercise 2.8. Describe the face lattice of the d-dimensional cube.

2.4 Simple and simplicial polytopes

We introduce a special class of polytopes.

Definition 2.27. A d-dimensional polytope is simple if every vertex is incident with
exactly d facets. A polytope is simplicial if every facet is a simplex.

Example 2.28.

(i) Every convex polygon is both simple and simplicial.
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(ii) The (3-dimensional) cube and the dodecahedron are simple polytopes, whereas the
octahedron and the icosahedron are simplicial. A tetrahedron is both simple and
simplicial.

(iii) The regular 120-cell is a simple 4-dimensional polytope and the regular 600-cell
is a simplicial 4-dimensional polytope. The regular 24-cell is neither simple nor
simplicial.

(iv) For every d, the d-dimensional cube is simple, the cross polytope is simplicial, and
the d-simplex is both simple and simplicial.

A polytope is simple if and only if its dual is simplicial. If the vertices of P are in
general position, then P is simplicial.

The following lemma reduces the study of upper bounds on f -vectors to simplicial
or simple polytopes.

Lemma 2.29. Let P be a d-dimensional convex polytope.

(i) There exists a d-dimensional simplicial polytope Q such that f0(Q) = f0(P ) and
f(Q) ≥ f(P ) (componentwise).

(ii) There exists a d-dimensional simple polytope Q such that fd−1(Q) = fd−1(P ) and
f(Q) ≥ f(P ).

Theorem 2.30. Let P be a simple d-dimensional polytope. Then the followings hold.

(i) Every vertex of P has exactly d neighbours.

(ii) If v is a vertex of P and {u1, u2, . . . , uk} is a k-element subset of its neighbours for
some k ≤ d, there is a unique k-face of P that contains v, u1, . . . , uk but no other
neighbour of v.

(iii) The intersection of any k ≤ d facets containing v is a (d− k)-face of P .

(iv) Let l : Rd → R be linear such that l(ui) ≤ l(v) holds for all neighbours u1, . . . , ud
of v. Then l|P is maximal at v.

(v) Every face of P is a simple polytope.

Proof. Applying a suitable affine bijection, we may assume that v is the origin, the d
facets incident with it are contained in the coordinate hyperplanes, and P is contained
in the nonnegative orthant.

(i)(i): Regarding P as an H-polytope, in addition to the half spacesHi =
{
x ∈ Rd

∣∣xi ≥ 0
}

,
the remaining defining half spaces contain the origin in their interiors. This implies that
the edges that are incident with v are subsets of the positive halves of the coordinate
axes.

(ii)(ii): Let i1, i2, . . . , id−k be the indices of the coordinates that are zero at u1, . . . , uk.
Then the hyperplane xi1 + xi2 + · · · + xid−k

= 0 intersects P in a k-face that contains
v, u1, . . . , uk and no other neighbour of v.

13



(iii)(iii): The intersection of k coordinate hyperplanes is an affine subspace of dimension
d− k, and it intersects P in a d− k-dimensional face.

(iv)(iv): Since P is a subset of the nonnegative orthant, which is the cone generated
by the edge vectors starting at v, every point is a conic combination of the neighbours
u1, . . . , ud. By assumption, l(ui) ≥ 0 for all i = 1, . . . , d, therefore for any point x with
nonnegative coordinates the inequality l(x) ≤ l(v) holds.

(v)(v): If F is a facet that contains v, then it is the intersection of a coordinate hyper-
plane with P , and the intersections of F with the remaining d − 1 hyperplanes are the
facets of F that contain v.

2.5 h-vector

For the study of f -vectors, it is useful to introduce another, related vector.

Definition 2.31. Let P ⊆ Rd be a convex polytope and l : Rd → R a linear functional
such that l(u) 6= l(v) whenever [u, v] is an edge of P (i.e., when u and v are neighbours).
Let us say that u is below v (or v is above u) if l(u) ≤ l(v). u is an upper neighbour of
v if it is a neighbour and it is above v. Likewise, a u is a lower neighbour of v if it is a
neighbour and it is below v.

For a vertex v of P , the index with respect to l is the number of lower neighbours of
v. We denote by hk(P, l) denote the number of vertices of P having index k with respect
to l.

If P is a simple d-dimensional polytope and l is as before, then we introduce the
vector h(P, l) = (h0(P, l), h1(P, l), . . . , hd(P, l)).

If P is a simple d-dimensional polytope, then

h(P,−l) = (h0(P,−l), h1(P,−l), . . . , hd(P,−l))
= (hd(P, l), hd−1(P, l), . . . , h0(P, l)),

since each of the d neighbours of a vertex v is either above or below v.

Theorem 2.32. Let P be a simple d-dimensional polytope and l : Rd → R a linear
functional such that l(u) 6= l(v) whenever [u, v] is an edge of P . Then the equality

fi(P ) =

d∑
k=i

(
k

i

)
hk(P, l)

holds for all i = 0, . . . , d.

Proof. Each face F has a unique highest vertex, since the subset of F where l is maximal
is a face that does not contain an edge. Therefore we can count the number of i-faces
by adding, for each vertex v, the number of i-faces whose highest vertex is v. Such a
face can only contain neighbours of v that are below v.
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Let v have index k. For each i-element subset Y of the set of lower neighbours of v,
there is a unique i-face F that contains v and Y and does not contain neighbours that
are not in Y . v is the highest vertex of this F . In total, there are

(
k
i

)
faces of dimension

i whose highest vertex is v. The claim follows by summing over all vertices.

Theorem 2.33. Let P be a simple d-dimensional polytope and l : Rd → R a linear
functional such that l(u) 6= l(v) whenever [u, v] is an edge of P . Then we have

hk(P, l) =
d∑

i=k

(−1)i−k
(
i

k

)
fi(P ).

In particular, h(P, l) is independent of l.

Proof. Let us encode both vectors in the generating functions FP (t) =
∑d

i=0 fi(P )ti and

HP,l(t) =
∑d

k=0 hk(P, l)tk. By Theorem 2.322.32, we have

FP (t) =

d∑
i=0

fi(P )ti

=
d∑

i=0

d∑
k=i

(
k

i

)
hk(P, l)ti

=
d∑

k=0

k∑
i=0

(
k

i

)
hk(P, l)ti

=
d∑

k=0

hk(P, l)
k∑

i=0

(
k

i

)
ti

=
d∑

k=0

hk(P, l)(t+ 1)k

= HP,l(t+ 1),

therefore HP,l(t) = FP (t− 1), which does not depend on l. Since

d∑
k=0

hk(P, l)tk = HP,l(t)

= FP (t− 1)

=
d∑

i=0

fi(P )(t− 1)i

=

d∑
i=0

i∑
k=0

(−1)i−k
(
i

k

)
fi(P )tk

=

d∑
k=0

[
d∑

i=k

(−1)i−k
(
i

k

)
fi(P )

]
tk,
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the claim follows by comparing the coefficients.

From now on we will drop l from the notation and write h(P ) = (h0(P ), h1(P ), . . . , hd(P )),
and call it the h-vector of the simple polytope P .

Corollary 2.34 (Dehn–Sommerville equations). If P is a d-dimensional simple polytope,
then the h-vector satisfies hk(P ) = hd−k(P ) for every k = 0, 1, . . . , d.

Remark 2.35. In terms of the f -vector, the equality h0(P ) = hd(P ) expands to

d∑
i=0

(−1)i
(
i

0

)
fi(P ) = (−1)d−d

(
d

d

)
fd(P ),

i.e.,
d−1∑
i=0

(−1)ifi(P ) = 1 + (−1)d−1,

which is the Euler formulaEuler formula (specialized to simple polytopes).
The equality h1(P ) = hd−1(P ) says

d∑
i=1

(−1)i−1ifi(P ) = fd−1(P )− dfd(P ).

Exercise 2.9. Find the h-vector of the d-dimensional simplex.

Exercise 2.10. Find the h-vector of the d-dimensional cube.

Exercise 2.11. Let P be a 3-dimensional simple polytope with n vertices. Using the
Dehn–Sommerville equations, prove that f1(P ) = 3

2n and f2(P ) = 2 + n
2 .

Exercise 2.12. Let P be a 4-dimensional simple polytope. Prove that f1(P ) = 2f0(P ).

2.6 Upper bound theorem

A facet of a simple polytope is simple by part Part (v)(v) of Theorem 2.302.30, therefore it also
has an h-vector.

Lemma 2.36. Let P ⊆ Rd be a d-dimensional simple polytope and F a facet. Then
h(F ) ≤ h(P ) (componentwise), and if every set of k + 1 facets of P has nonempty
intersection, then hk(F ) = hk(P ).

Proof. Let l0 : Rd → R be a linear functional such that, with m := minx∈P l0(x), x ∈ P
and l0(x) = m implies x ∈ F (if we picture l0 as the vertical coordinate, we may imagine
that P rests on F ). Let l : Rd → R be a small perturbation of l0 such that l takes
different values on any pair of neighbouring vertices of P , and l(x) < l(y) whenever x
and y are vertices of P such that x ∈ F and y /∈ F .
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Let v be a vertex in F , and let its index (as a vertex of F ) with respect to l be k.
This means that there are k neighbours of v in F below v and d−1−k neighbours above
v. In P , v has an additional neighbour, which is above v by the choice of l. Therefore
the index of v as a vertex of P is also k. Since hk counts the number of index-k vertices,
we have hk(F ) ≤ hk(P ).

Suppose that every set of k + 1 facets of P have nonempty intersection. Let v be
a vertex of P of index k. Let u1, . . . , uk be its lower neighbours and uk+1, uk+2, . . . , ud
its upper neighbours. There is a d − k-face G that contains v, uk+1, uk+2, . . . , ud by
Part (ii)(ii) of Theorem 2.302.30, and by Part (iv)(iv), l is minimal on G at v. By Part (iii)(iii) of
Theorem 2.302.30, G is the intersection of k facets F1, . . . , Fk where ui /∈ Fi but v and the
other lower neighbours are contained in Fi. Then F ∩ G = F ∩ F1 ∩ · · · ∩ Fk is the
intersection of k + 1 facets, therefore it is nonempty by assumption. Let one of the
vertices of F ∩G be w. Since l is minimal on G at v, we have l(v) ≤ l(w). By the choice
of l, this implies v ∈ F . We conclude that every vertex of P of index k is in F , therefore
hk(F ) ≥ hk(P ).

Proposition 2.37. Let P be a simple d-dimensional polytope. Then for k = 0, 1, . . . , d−
1 we have ∑

F⊆P
is a facet

hk(F ) = (d− k)hk(P ) + (k + 1)hk+1(P ).

Proof. Let l : Rd → R be a linear functional that takes different values on neighbouring
vertices of P (and hence of every facet).

Let v be a vertex. There are exactly d faces that contain v, intersecting the set of
the d neighbours of v in all possible subsets of size d − 1. If the omitted neighbour is
above v, then the index of v in as a vertex of P is the same as the index as a vertex of
the facet. Otherwise, if the omitted neighbour is below v, then the index as a vertex of
P is one plus the index as a vertex of the facet.

Thus, a vertex v can contribute to the left hand side in two ways: either it has index
k as a vertex of P , and the facet is obtained by omitting an upper neighbour (d − k
possibilities), or it has index k+1 and the facet is obtained by omitting a lower neighbour
(k + 1 possibilities).

Theorem 2.38. Let P be a simple d-dimensional polytope and let n = fd−1(P ). Then
for k = 0, 1, . . . , d the inequality

hk(P ) ≤ min

{(
n− d+ k − 1

k

)
,

(
n− k − 1

d− k

)}
holds.

If the intersection of any set of k facets of P is nonempty, then equality holds.

Proof. By Lemma 2.362.36 and Proposition 2.372.37, we have

(d− i)hi(P ) + (i+ 1)hi+1(P ) =
∑
F⊆P

is a facet

hi(F ) ≤ nhi(P )
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for all i, which can be rearranged as

hi+1(P ) ≤ n− d+ i

i+ 1
hi(P ),

with equality if the intersection of any set of i facets of P is nonempty. Since h0(P ) = 1,
this implies

hk(P ) ≤
k−1∏
i=0

n− d+ i

i+ 1
=

(
n− d+ k − 1

k

)
,

with equality if the intersection of any set of k facets of P is nonempty.
By the Dehn–Sommerville equationsDehn–Sommerville equations, we also have

hk(P ) = hd−k(P ) ≤
(
n− d+ (d− k)− 1

d− k

)
=

(
n− k − 1

d− k

)
,

which concludes the proof.

Theorem 2.39 (Upper Bound Theorem). Let P be a d-dimensional polytope with n
facets. If i ≤ bd2c, then

fi(P ) ≤
bd/2c∑
k=i

(
k

i

)(
n− d+ k − 1

k

)
+

d∑
k=bd/2c+1

(
k

i

)(
n− k − 1

d− k

)
,

while if i > bd2c, then

fi(P ) ≤
(

n

d− i

)
.

Proof. We prove the bound for i > bd2c first. Since every i-face is the intersection of
d− i facets, fi(P ) is at most the number of d− i-element subsets of the set of facets.

Next we prove the i ≤ bd2c case. By Lemma 2.292.29, there is a simple d-dimensional
polytope Q with n facets and f(P ) ≥ f(Q). We use Theorem 2.322.32 and Theorem 2.382.38 to
estimate the number of faces of Q:

fi(P ) ≤ fi(Q)

=
d∑

k=i

(
k

i

)
hk(Q)

≤
d∑

k=i

(
k

i

)
min

{(
n− d+ k − 1

k

)
,

(
n− k − 1

d− k

)}

≤
bd/2c∑
k=i

(
k

i

)(
n− d+ k − 1

k

)
+

d∑
k=bd/2c+1

(
k

i

)(
n− k − 1

d− k

)
.
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In the following we show that the upper bounds in Theorem 2.392.39 cannot be improved.
In fact, we will construct polytopes depending on d and n that saturate every inequality.

Definition 2.40. The moment curve in Rd is the curve γ : R→ Rd, γ(t) = (t, t2, . . . , td).
The convex hull of a finite set of points on γ is a cyclic polytope.

Note that any d+1 points on the moment curve are affinely independent, therefore a
hyperplane intersects it in at most d points. It follows that cyclic polytopes are simplicial.

Proposition 2.41. Let C(d, n) = conv({v1, . . . , vn}) be a cyclic polytope with vi = γ(ti),
where t1, . . . , tn are distinct real numbers. Let I ⊆ [n] be a set such that |I| ≤ d

2 . Then
F = conv({vi}i∈I) is a face of C(d, n).

Proof. Let I ⊆ [n], |I| ≤ d
2 . Consider the nonnegative polynomial

p(τ) =
∏
i∈I

(τ − ti)2 =
d∑

m=0

amτ
m,

and the linear functional l(x1, . . . , xd) =
∑d

m=1 amxm. For the points of the moment
curve, we have l(t, t2, . . . , td) = p(t) − a0 ≥ −a0. If i ∈ I, then p(ti) = 0, therefore
equality holds. This implies that the hyperplane H =

{
x ∈ Rd

∣∣l(x) = −a0
}

intersects
C(d, n) in F , and C(d, n) is contained in one of the closed half spaces whose boundary
is H.

Proposition 2.42. The dual of C(d, n) saturates the inequalities in Theorems 2.382.38
and 2.392.39.

Proof. Let P be a dual of C(d, n). By Theorem 2.322.32 and the Dehn–Sommerville equationsDehn–Sommerville equations,
for every i the number fi(P ) is a conic combination of h0(P ), . . . , hbd/2b(P ). Therefore
if the upper bounds in Theorem 2.382.38 hold with equalities, then also the bound in The-
orem 2.392.39 is saturated.

For k ≤ d
2 , the intersection of any k facets of P is a (d − k)-face of P . This implies

that the inequalities in Theorem 2.382.38 hold with equalities.

To summarize, the dual of C(d, n) maximizes the number of i-faces among d-dimensional
convex polytopes with n facets, for each 0 ≤ i ≤ d ≤ n − 1. By taking duals, C(d, n)
maximizes the number of i-faces among d-dimensional convex polytopes with n vertices.

2.7 Graphs of polytopes

Following the usual notation and terminology, we write a simple and undirected graph
as G = (V,E) where V is a set and E ⊆

(
V
2

)
, and the elements of V and E are called

vertices and edges, respectively. For a subset S ⊆ V we denote by G − S the graph
with vertex set V \S and edge set E ∩

(
V \S
2

)
(i.e., the vertices in S along with any edge

incident with them removed).
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Definition 2.43. A walk in a graph G is a sequence v1, v2, . . . , vn of vertices such that
{vi, vi+1} is an edge for all i = 1, 2, . . . , n− 1. The graph G = (V,E) is connected if for
all u, v ∈ V there is a walk starting at u and ending at v.

A graph G is k-connected (or k-vertex-connected) if it has at least k+ 1 vertices and
for all subsets S of k − 1 vertices, G− S is connected.

Definition 2.44. Let P be a polytope. The graph of P is the graph G(P ) whose vertex
set is the set of vertices of P , and {u, v} is an edge of G(P ) if [u, v] is an edge of P .

Theorem 2.45 (Balinski). Let P be a d-dimensional polytope. Then G(P ) is d-connected.

Proof. Since P is d-dimensional, G(P ) it has at least d+1 vertices. Let S ⊆ V , |S| = d−1.
We need to show that G(P ) − S is connected. Let s =

∑
v∈S

1
d−1v, and let F be the

unique face that contains s in its relative interior.
If F 6= P , then it is the intersection of P with a supporting hyperplane, therefore

S ⊆ F as well. Let l : Rd → R be a linear functional such that for maxx∈P l(x) = M
the equality F = l−1(M) ∩ P holds. Let m = minx∈P l(x) and F0 = l−1(m) ∩ P . Every
vertex v not contained in F0 has at least one neighbour u such that l(u) < l(v). This
implies that for any v ∈ V \ S there exists a walk v = v1, v2, . . . , vn ∈ F0. By induction
on the dimension of the polytope, G(F0) is a connected subgraph of G(P )−S, therefore
G(P )− S is also connected.

Suppose now that F = P . Let l be a nonzero linear functional that takes a constant
value c on S and at least one vertex v0 in V \ S. Let Fmin and Fmax be the faces of P
where l is minimal and maximal. If a vertex v satisfies l(v) ≤ c, then there is a path
in G(P ) − S starting at v and ending in Fmin (as in the previous case, by appending
a neighbour where l strictly decreases). Similarly, if l(v) ≥ c, then there is a path in
G(P )−S starting at v and ending in Fmax. But v0 is connected to both Fmin and Fmax,
therefore G(P )− S is connected.

Our next goal is to prove Steinitz’ theorem: simple, 3-connected, planar graphs are
graphs of 3-polytopes. The main idea in Steinitz’ proof is to show that such a graph can
be built fromK4 with a sequence of transformations (called ∆Y operations) that preserve
realizability as the graph of a 3-polytope. The graph-theoretic part was strengthened by
Epifanov, who showed that by allowing series and parallel reductions, planar graphs can
be reduced to a single edge between a specified pair of vertices. We follow a simplified
proof of this result due to Truemper, with the following steps:

• every simple, 3-connected, planar graph is a minor of a suitably large grid graph

• if a 3-connected graph can be transformed by ∆Y reductions to K4, then so is
every 3-connected minor

• grid graphs can be transformed into K4 by ∆Y reductions

• if a graph G can be transformed by a ∆Y reduction into another graph G′ that is
the graph of a polytope, then G is also the graph of a polytope.
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In the following we also need to allow graphs to be non-simple. We continue to use
the notation G = (V,E), but the edge set E can no longer be identified with a subset of
the set of unordered pairs of vertices. Instead, an relation called incidence is assumed to
be given between V and E such that every e ∈ E is incident with exactly 1 or 2 vertices.
An edge that is incident with one vertex is a loop. Edges that are incident with the same
set of vertices are called parallel.

Definition 2.46. A drawing of a graph G = (V,E) is a map d : V → R2 and for each
e ∈ E a contiuous injective map γe : [0, 1]→ R2 such that

(i) d is injective,

(ii) for each edge e, if u, v ∈ V are incident with e (where u = v is allowed), then
γe({0, 1}) = {d(u), d(v)},

(iii) for each edge e, γe((0, 1)) ∩ d(V ) = ∅,

A crossing of a drawing is a point x ∈ R2 such that there exist distinct edges e, f such
that x ∈ γe((0, 1)) ∩ γf ((0, 1)).

A graph G is planar if it has a drawing without crossing.

We consider the following local transformations of graphs.

Definition 2.47. The deletion of an edge removes it from E without changing V . The
contraction of an edge e that is not a loop removes it from E and replaces the vertices
u, v incident with e with a new vertex that is incident with precisely those edges that
were previously incident with either u of v. Graphs that can be obtained from G by
a sequence of deletions and contractions is a minor of G. The reverse operation of a
contraction is called splitting.

An SP reduction is a sequence of deletions of edges that are parallel with others and
contractions of edges that are incident with at least one degree-2 vertex (series edges).

A ∆-to-Y operation replaces a nonseparating triangle with a 3-star that connects the
same vertices. The reverse is called a Y -to-∆ operation. ∆-to-Y operations and Y -to-∆
operations are collectively referred to as ∆Y operations. A simple ∆Y reduction is any
∆Y operation followed by all possible SP reductions.

In the following, we use duality of polytopes (that can be realized by the polar
construction) to reduce the number of cases that we need to consider. The following
notions correspond to each other under duality:

planar graph G ←→ dual graph G∗,
contracting series edges ←→ deleting parallel edges,

k-connected ←→ k-connected,
nonseparating triangle ←→ 3-star,
∆-to-Y transformation ←→ Y -to-∆ transformation.

Lemma 2.48. Let G be a graph and v a degree-3 vertex with three different neighbours,
and let G′ be the graph obtained by applying a Y -to-∆ operation at v.
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(i) If G is a 2-connected graph, then G′ is also 2-connected.

(ii) If G is 3-connected, G 6= K4, then, after deleting any parallel edges of G′, the
resulting graph is also 3-connected.

Proof. Any set of one or two separating vertices in G′ is also a separating set in G. This
implies that if we delete parallel edges, then 3-connectedness is preserved.

Lemma 2.49. Let G be a 3-connected planar graph and G′ the result of a simple ∆Y
reduction. If G′ is the graph of a 3-dimensional polytope then G is also the graph of a
3-dimensional polytope.

Proof. By duality, it is sufficient to consider a ∆-to-Y transformation (followed by all
possible SP reductions). Given a polytope P ′ with graph G′, we can obtain a polytope
P with graph G by cutting P ′ near the degree-3 vertex corresponding to the center of
the “Y ”. We can distinguish four cases depending on the number of degree-3 vertices of
the triangle, which correspond to different ways of cutting (see Figure 22).

Figure 2: The four kinds of cuts of a polytope P ′ near a degree-3 correspond to simple ∆Y reductions
from different graphs to G(P ′), distinguished by the number of degree-3 vertices of the triangle.

Let us call a 2-connected graph ∆Y -reducible if it can be transformed into C2 (two
vertices with two parallel edges) by a sequence of ∆Y transformations and SP reductions.

Lemma 2.50. Let G be a planar graph that is ∆Y -reducible, and let H be a 2-connected
minor. Then H is ∆Y -reducible.

Proof. If H has series or parallel edges, then we can apply SP reductions to remove them
both in G and in H. We may therefore assume that H has no series or parallel edges.

We use induction on the number of reduction steps for G. If the reduction for G
starts with a series or parallel reduction, then H is a minor of the reduced graph as well,
since it does not contain both edges.

If the reduction of G starts with a ∆Y operation, then we may assume that this is
a ∆-to-Y operation by considering duals if necessary, resulting in a graph G′.
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If all three edges in the triangle are present in H, then the same ∆-to-Y operation can
be applied to H as well, resulting in a minor H ′ of G′. By induction, H ′ is ∆Y -reducible,
and therefore H is ∆Y -reducible as well.

Otherwise some of them are deleted or all of them are contracted when H was
formed. In the latter case, we may equivalently delete first one edge and then contract
the remaining two. Thus we may assume that the first step of obtaining H from G is
the deletion of an edge. But then we get the same graph by contracting the opposite
edge in G′, therefore H is a minor of G′ as well. By induction, H is ∆Y -reducible.

For m,n ∈ N, the grid graph G(m,n) is the graph with vertex set ([1,m]×[1, n])∩Z2,
where (i, j) and (i′, j′) are neighbours if and only if |i− i′|+ |j − j′| = 1.

Lemma 2.51. Let G be a planar graph. Then G is a minor of a grid graph.

Proof. By repeatedly splitting the vertices of G we can obtain a graph G′ such that
every vertex has degree at most 3. Then G′ is still planar and G is a minor of G′. We
then take any drawing of G′, replace the edges by simple polygonal chains consisting
of axis-parallel line segments, then modify them in such a way that every vertex has
rational coordinates. After clearing denominators and subdividing at each integer point,
we obtain a subgraph of a suitably large grid.

Lemma 2.52. Let m,n ≥ 3. Then the grid graph G(m,n) is ∆Y -reducible to K4.

Proof. If there is an edge e between two neighbours of a degree-3 vertex v, then the
deletion of e is a simple ∆Y reduction: we apply a ∆-to-Y operation to the triangle
formed by v and the endpoints of e, then contract v with the new vertex.

If there is an edge e between two neighbours of a degree-4 vertex v, then we remove
the edge and add another between the other two neighbours by a ∆-to-Y operation at
this triangle and a Y -to-∆ operation at v.

Let G′(m,n) be the graph obtained from G(m,n) by a series reduction at the (1, 1)
vertex (so G(m,n) is ∆Y -reducible to G′(m,n)). We apply series reduction at the
opposite corner (m,n), and move the new edge by a sequence of the degree-4 moves
until it hits the left column or bottom row. At this point the edge can be deleted by a
degree-3 move or it is a parallel edge that can be removed.

We continue with the (m− 1, n) vertex in a similar way, applying a series reduction,
a sequence of degree-4 moves and deletion of the edge when it arrives in the left column
or bottom row. After repeating this process with the vertices (m− 2, n), . . . , (3, n), The
last square is removed by two series and one parallal reduction.

In this way we see that G′(m,n) is ∆Y -reducible to G′(m,n − 1) if n ≥ 4. Since
G′(m,n) is isomorphic to G′(n,m), we obtain that G′(m,n) is ∆Y -reducible to G′(3, 3)
as well.

From G′(3, 3) we proceed by series reducing the remaining 3 corners, applying a
∆-to-Y operation and two series reductions.

Corollary 2.53. Let G be a 3-connected planar graph. Then G can be reduced to K4 by
a sequence of simple ∆Y -reductions.
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Proof. We use induction on the number of edges. By Lemmas 2.502.50 to 2.522.52, G is ∆Y -
reducible. We apply the corresponding moves until a parallel or series edge is created.
After an SP reduction, we obtain a 3-connected planar graph (Lemma 2.482.48) with fewer
edges.

Theorem 2.54 (Steinitz). A finite, simple graph G is the graph of a 3-dimensional
polytope if and only if it is 3-connected and planar.

Proof. Let P be a 3-dimensional polytope. By Balinski’s theoremBalinski’s theorem, the graph G = G(P )
is 3-connected. If 0 ∈ int(P ) and the z-axis contains no vertex, then the map

(x, y, z) 7→

(
x√

x2 + y2 + z2 − z
,

y√
x2 + y2 + z2 − z

)

determines a drawing (by applying to the vertices and composing with the parameterized
segments corresponding to the edges). Therefore G(P ) is planar.

Now assume that G is a 3-connected, simple, planar graph. If G = K4, then G =
G(P ) where P is a tetrahedron. Otherwise, G can be reduced to K4 by a sequence of
∆Y reductions by Corollary 2.532.53. Using Lemma 2.492.49 at each step from the end of the
reduction, we can see that G is also the graph of a 3-polytope.

Remark 2.55. A 3-connected, simple, planar graph has a drawing in which every edge
is drawn as a straight line segment and every face (including the outer face) is a convex
polygon. This follows from the Steinitz theoremSteinitz theorem by noting that such a graph is the graph
of a convex 3-dimensional polytope P , and a drawing can be obtained by projecting the
vertices and edges of P from a point x close to a facet F to the plane containing F .

Exercise 2.13. A convex polytope P is dimensionally ambiguous if there is a convex
polytope Q such that dimP 6= dimQ and G(P ) ' G(Q). Show that a d-simplex is
dimensionally ambiguous if and only if d ≥ 5.

Exercise 2.14. Let P be a convex 3-dimensional polytope, and let v3 denote the number
of degree-3 vertices and f3 the number of triangular faces. Show that v3 + f3 ≥ 8.

Exercise 2.15. Find a ∆Y reduction of the graph of the cube.

2.8 Convex hull computation in the plane

In this secion we briefly discuss the computation of the convex hull. The general task
is, given a finite set V ⊆ Rd of points as input, to output a description of the convex
hull. There are various ways kinds of descriptions one might aim for: give a list of half
spaces whose intersection is conv(V ), find all vertices and faces (given by the sets of
their vertices), the face lattice, or the incidence relation between vertices and facets. In
a different direction, one might wish to test membership in a convex hull or draw random
samples from the uniform distribution on conv(V ).
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We consider only the planar case, where the task can be formulated as listing the
vertices of the convex hull of V in (say) counterclockwise order. We assume that the
points are given by pairs of coordinates with respect to a given Cartesian coordinate
system. The steps of the monotone chain algorithm (also known as Andrew’s algorithm)
are the following:

1. Sort the points lexicographically by their x and y coordinates to get a list P .

2. Let U and L be empty lists.

3. For i = 1, 2, . . . , n:

• While L contains at least two points and the last two points and P [i] do not
form a counterclockwise turn: remove the last point in L.

• Append P [i] to L.

4. For i = n, n− 1, . . . , 1:

• While U contains at least two points and the last two points and P [i] do not
form a counterclockwise turn: remove the last point in U .

• Append P [i] to U .

5. Remove the last point of L and U .

6. Return the concatenation of L and U .

Remark 2.56. The edges determined by L and U before removing their last points are
the lower and upper hulls of V .

Theorem 2.57. Given a list of n points in R2, the monotone chain algorithm returns
the vertices of their convex hull in O(n log n) time.

Proof. Let V be the set of input points and let H be the polygon formed by the vertices
in the output (the edges are formed by adjacent elements in the list). Since every vertex
of P is in V , we have H ⊆ conv(V ).

Consider the sets

U↓ =
{

(x, y) ∈ R2
∣∣∃y′ ∈ R : y ≤ y′ and (x, y′) ∈ conv(U)

}
and

L↑ =
{

(x, y) ∈ R2
∣∣∃y′ ∈ R : y′ ≤ y and (x, y′) ∈ conv(L)

}
.

By construction, both U↓ and L↑ are convex and can only get larger in every step, and
after step i they contain P [i]. Therefore, when the algorithm terminates, conv(V ) ⊆
U↓ ∩ L↑ = H.

The statement on the runtime follows from the fact that sorting is possible in
O(n log n) time, and the subsequent loops require O(n) steps (each point is added exactly
once and removed at most once).
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Remark 2.58. The upper bound on the runtime as a function on the input size is
optimal: it is known that sorting a list of numbers requires Ω(n log n) comparisons (worst
case) and sorting x1, x2, . . . , xn is equivalent to finding the convex hull of the points
(x1, x

2
1), (x2, x

2
2), . . . , (xn, x

2
n).

3 Incidence problems

In the following we will use standard notation in connection with the asymptotic be-
haviour of positive sequences, which we first recall (computer science definitions).

Definition 3.1. Let f, g : N→ R≥0, g(n) > 0 for all sufficienty large n. We write

(i) f = O(g) if lim sup
n→∞

f(n)

g(n)
<∞,

(ii) f = o(g) if lim sup
n→∞

f(n)

g(n)
= 0,

(iii) f = Ω(g) if lim inf
n→∞

f(n)

g(n)
> 0,

(iv) f = Θ(g) if f = O(g) and g = O(f).

We note that some authors prefer notations like f ∈ O(g), etc., which may be consid-
ered more appropriate as it emphasizes that the relation is not symmetric. Nevertheless,
the symbol = in this sense is in widespread use.

3.1 Point–line incidences

We study the maximum possible number of incidences between points and lines.

Definition 3.2. Let P be a set of points and L a set of lines in the plane. The number
of incidences is I(P,L) = |{(p, l) ∈ P × L|p ∈ l}|.

For m,n ∈ N, we denote by I(m,n) the maximum of I(P,L) over all sets of points
and lines satisfying |P | = m, |L| = n.

Since I(P,L) is the cardinality of a subset of P × L, we have I(P,L) ≤ |P | · |L| and
therefore I(m,n) ≤ mn.

We will not determine exact values but aim for asymptotically optimal lower and
upper bounds.

Proposition 3.3. I(n, n) ∈ Ω(n4/3).

Proof. Let n = 4k3 where k ∈ N. Let la,b =
{

(x, y) ∈ R2
∣∣y = ax+ b

}
, and consider the

sets

P =
{

(i, j) ∈ Z2
∣∣0 ≤ i ≤ k − 1, 0 ≤ j ≤ 4k2 − 1

}
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and

L =
{
ya,b
∣∣a, b ∈ Z2, 0 ≤ a ≤ 2k − 1, 0 ≤ b ≤ 2k2 − 1

}
.

Since 0 ≤ i < k implies b ≤ ai + b < ak + b < 2k2 + 2k2 = 4k2 for all 0 ≤ a < 2k
and 0 ≤ b < 2k2, the line la,b contains the k points (0, b), (1, a+ b), . . . , (k, ak + b) in P .
Therefore I(n, n) ≥ I(P,L) = k|L| = kn = 1

3√4
n4/3.

For general n, we can use that n 7→ I(n, n) is monotone increasing, so

I(n, n) ≥ I
(

4
⌊

3
√
n/4

⌋3)
≥ 1

3
√

4

(
4
⌊

3
√
n/4

⌋3)4/3

= 4
⌊

3
√
n/4

⌋4
,

therefore

lim inf
n→∞

I(n, n)

n4/3
≥ lim inf

n→∞

4
⌊

3
√
n/4

⌋4
n4/3

≥ lim inf
n→∞

4
(

3
√
n/4− 1

)4
n4/3

=
1
3
√

4
.

Recall the definition of a drawing of a graph (Definition 2.462.46).

Definition 3.4. Let d, γ be a drawing ofG = (V,E). For x ∈ R2, let kx = |{e ∈ E|x ∈ γe((0, 1))}|,
i.e., the number of edges incident with x. The crossing number of the drawing is∑

x∈R2

(
kx
2

)
. The crossing number of a graph G, denoted by cr(G), is the minimum

of the crossing numbers over its drawings.

Note that the endpoints of the curve γe are excluded, therefore kx = 0 when x = d(v)
for a vertex v ∈ v.

Planar graphs are exactly the graphs satisfying cr(G) = 0. It is known that a (simple)
planar graph satifies |E| ≤ 3|V | − 6. This can be improved to a lower bound on cr(G)
in terms of |V | and |E|.

Lemma 3.5. Let G = (V,E) be a simple graph. Then cr(G) ≥ |E| − 3|V |.

Proof. Consider a drawing of G with cr(G) crossings, and delete one edge at each cross-
ing. Then we obtain a planar graph with |V | vertices and |E| − cr(G) edges, therefore
|E| − cr(G) ≤ 3|V | − 6, which implies the claim.

The following bound improves on Lemma 3.53.5 when |E| > 8|V |, and is asymptotically
tight.

Theorem 3.6 (Crossing number theorem). Let G = (V,E) be a simple graph. Then

cr(G) ≥ 1

64

|E|3

|V |2
− |V |.
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Proof. If |E| ≤ 4|V |, then the right hand side is at most 0, therefore the inequality is

true. Assume now that |E| > 4|V |. Let p = 4|V |
|E| ∈ (0, 1), and let V ′ ⊂ V be a random

subset formed by including each vertex of V with probability p, independently of each
other. Let G′ = (V ′, E′) be the (random) subgraph of G induced on V ′.

Let (d, γ) be a drawing of G with crossing number cr(G). We may assume that there
are no crossing edges incident with the same vertex. By restricting d and γ, we obtain
a drawing of G′ with some crossing number x′. By Lemma 3.53.5, we have

x′ ≥ cr(G′) ≥ |E′| − 3|V ′|,

therefore also E(x′) ≥ E|E′| − 3E|V ′|.
Each vertex of V appears in V ′ with probability p, an edge is present in E′ if and

only if both endpoints are in V ′, and a crossing of G gives rise to a crossing of G′ if and
only if both edges are in E′. It follows that

E|V ′| = p|V |
E|E′| = p2|E|
E(x′) = p4 cr(G).

By the previous estimates and using the choice of p, we obtain

cr(G) = p−4 E(x′)

≥ p−4 E|E′| − 3p−4 E|V ′|
≥ p−2|E| − 3p−3|V |

=
|E|2

16|V |2
|E| − 3

|E|3

64|V |3
|V |

=
1

64

|E|3

|V |2

≥ 1

64

|E|3

|V |2
− |V |

Theorem 3.7 (Szemerédi–Trotter). The maximum number of incidences between m
points and n lines in the plane satisfies I(m,n) ≤ 3

√
32m2/3n2/3 + 4m+n. In particular,

I(m,n) = O(m2/3n2/3 +m+ n).

Proof. Let P be a set of points and L a set of lines in R2. We construct a graph
G = (V,E) as follows: the vertex set is V = P , and {u, v} is an edge if both are incident
with a line in L and P ∩ (u, v) = ∅ (i.e., there are no points on the line between the two).
The points and line segments then determine a drawing of G.

A line l ∈ L containing k points corresponds to k − 1 edges of the graph, therefore
I(P,L) = |E|+ |L|. The edges are subsets of |L| lines, and the lines have at most

(|L|
2

)
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intersection points, therefore cr(G) ≤
(|L|

2

)
. From the crossing number theoremcrossing number theorem we have

1

64

|E|3

|V |2
− |V | ≤ cr(G) ≤

(
|L|
2

)
,

which implies |E|3 ≤ 32|V |2|L|2 + 64|V |3. Since a3 + b3 ≤ (a+ b)3, we obtain

I(P,L) = |E|+ |L| ≤ 3
√

32|P |2/3|L|2/3 + 4|P |+ |L|.

Exercise 3.1. Prove that, for all m,n ∈ N, the inequality I(m,n) ≥ m+ n− 1 holds.

3.2 Unit distances

We study distances in point sets.

Definition 3.8. Let P be a set of points in the plane. The number of unit distances is

U(P ) =
∣∣∣{{x, y} ∈ (P2)∣∣∣dist(x, y) = 1

}∣∣∣, and the number of distinct distances if g(P ) =

|{dist(x, y)|x, y ∈ P, x 6= y}|.
For n ∈ N, we denote by U(n) the maximum of U(P ) over n-point sets P , and by

g(n) the minimum of g(P ) over n-point sets P .

Clearly, U(n) ≤
(
n
2

)
. For small values of n, one can verify that U(1) = 0, U(2) = 1,

U(3) = 3, U(4) = 5. The two quantities are related as U(n)g(n) ≥
(
n
2

)
.

An upper bound on U(n) can be obtained in a similar way as on I(n, n), which gives
U(n) = O(n4/3), and as a consequence g(n) = Ω(n2/3). The precise order of magnitude
is not known. We explain the best known lower bound, starting with number theoretic
tools.

The configuration used in the lower bound consists of the vertices of an (appropriately
rescaled) square grid. To understand the number of occurrences of a given distance, we
look for integers that can be written as a sum of squares in many ways.

Lemma 3.9. Let p1, p2, . . . , pr be distinct primes of the form 4k + 1 (k ∈ N). Then
N = p1p2 . . . pr can be written as a sum of squares in at least 2r ways.

Proof. We work in the ring of Gaussian integers Zi, which is a Euclidean domain, there-
fore has unique factorization: every Gaussian integer is the product of a unit and Gaus-
sian primes, in a unique way up to reordering and multiplying the factors by units
(associates). The units are ±1,±i, and the primes are 1 + i, the primes in Z of the form
4k + 3, and exactly two factors (which are necessarily conjugates of each other) of the
primes in Z of the form 4k + 1.

Write pj = τjτj with τj ∈ Zj . For every subset J ⊆ [r] we have a factorization

N =

∏
j∈J

τj
∏

j∈[r]\J

τj


︸ ︷︷ ︸

AJ+iBj

∏
j∈J

τj
∏

j∈[r]\J

τj


︸ ︷︷ ︸

AJ−iBJ

,
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which also means N = A2
J + B2

J . By the unique factorization property, the factor
AJ + iBj determines the subset J as well. The only ambiguity is the order of the two
factors, therefore the 2r subsets determine 2r−1 decompositions. Accounting for the
possibility of swapping the two terms, we get 2r sums if the order matters.

Two integers a and b are coprime if their only positive common divisor is 1. Recall
that Euler’s function ϕ is the number theoretic function defined such that ϕ(d) is the
number of integers in [1, d] that are coprime to d.

Theorem 3.10. Let a, d ∈ N>0 be coprime and let πd,a(n) denote the number of primes
in [1, n] which are of the form a+ kd for some k ∈ N. Then

πd,a(n) = (1 + o(1))
1

ϕ(d)

n

lnn
.

The prime number theorem is the special case a = d = 1.

Theorem 3.11. There is a constant c such that for all n ≥ 2, U(n) ≥ n1+
c

log logn .

Proof. Let pj denote the jth prime of the form 4k + 1, and let r be the largest number
such that M = p1p2 · · · pr−1 ≤ n

4 . Suppose that n is a square, and let P be the points of
a
√
n×
√
n grid with step size 1√

M
.

For each point p ∈ P , there are at least as many points q ∈ P with dist(p, q) = 1 as
the number of (ordered) ways to write M as a sum of two squares of positive integers.

Since there are 4 sign choices, there are at least 2r−1

4 such points q, and at least n2r−1

8
(unordered) pairs of points at distance 1 in total.

Using the choice of r and 5 = p1 ≤ pj ≤ pr, we obtain the chain of inequalities

er ≤ 4p1p2 · · · pr−1 ≤ n < 4p1p2 · · · pr−1pr < 4prr.

Theorem 3.103.10 implies that

r = π4,1(pr) = (1 + o(1))
1

2

pr
ln pr

≥ √pr ≥ n1/3r

for large n. This implies

r ≥ lnn

3 log r
≥ lnn

3 ln lnn

and therefore
U(n) ≥ U(P ) ≥ n2r−4 ≥ n1+

c
ln lnn

when n is large.
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