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1 Affine subspace, affine combination

In this lecture we introduce the basic concepts used throughout the semester.
We deal with only finite dimensional Euclidean spaces. We regard an n-dimensional

Euclidean spaces as an affine space whose vectors are the elements of the n-dimensional
vector space Rn over the set of real numbers. Fixing an arbitrary point of an affine
space, the elements of the corresponding vector space and the points of the space can
be identified in a natural way, in which a point is associated to the vector that moves
the fixed point to this one. In this case the fixed point is usually called origin. As it
often appears in the literature, during the term we identify the Euclidean space with the
vector space Rn (in high school language: we identify points and their position vectors).
We will usually denote the points/vectors of the space Rn by small Latin letters, while
its subsets by capital Latin letters.

We denote the usual inner (scalar) product of Rn by 〈., .〉. The length ‖v‖ of a vector
v ∈ Rn is the quantity

√
〈v, v〉. For the coordinates of the vector/point v in the standard

orthonormal basis of Rn we use the notation v = (v1, v2, . . . , vn). We denote the origin
by o. The distance of the points p = (x1, x2, . . . , xn) and q = (x′1, x

′
2, . . . , x

′
n), denoted

by dist(p, q), is the quantity

√
n∑
i=1

(x′i − xi)2, which coincides with the value of ‖q − p‖.

The interior, boundary, closure and cardinality of a set X ⊆ Rn will be denoted by
int(X), bd(X), cl(X), |X|, respectively.

Definition 1.1. Let V1 and V2 be two point sets, and λ ∈ R. Then

V1 + V2 = {v1 + v2|v1 ∈ V1, v2 ∈ V2}

is called the Minkowski sum of the two sets, and

λV1 = {λv1|v1 ∈ V1}

the multiple of V1 by λ.

Definition 1.2. Let p ∈ Rn be an arbitrary point, and L an arbitrary (linear) subspace
in the vector space Rn. Then the set p+L ⊆ Rn is called an affine subspace of the space
Rn.

The next remark is a straightforward consequence of the properties of linear sub-
spaces.

Remark 1.3. Let p, q ∈ Rn and let L,L′ be linear subspaces in Rn. Then p+L = q+L′

is satisfied if and only if L = L′ and q ∈ p+ L.

Proof. Assume that p+L = q+L′. Then L = (q−p)+L′ by the definition of Minkowski
sum, which yields, in particular, that q − p ∈ L, from which we have q ∈ p+ L. But as
linear subspaces are closed with respect to addition, q − p ∈ L implies (q − p) + L = L,
from which (q− p) +L = (q− p) +L′, yielding L = L′. On the other hand, if q ∈ p+L,
then (q − p) ∈ L =⇒ (q − p) + L = L =⇒ q + L = p+ L.
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Theorem 1.4. A nonempty intersection of affine subspaces is an affine subspace.

Proof. Consider the affine subspaces Ai (i ∈ I), where I is an arbitrary index set. Let
A =

⋂
i∈I

Ai. Consider a point p ∈ A. Then, due to the previous remark, for any i ∈ I

we have Ai = p + Li for some suitable linear subspace Li of Rn (see Figure 11). The
intersection of linear subspaces is a linear subspace, and thus, L =

⋂
i∈I

Li is a linear

subspace. On the other hand, we clearly have A = p + L, from which the assertion
follows.

A1 = p+ L1

A2 = p+ L2

A = p+
⋂
i∈I Li

Figure 1: If p is a point in the intersection of affine subspaces Ai, then Ai = p + Li for suitable linear
subspaces Li and the intersection of the affine subspaces is the affine subspace p+

⋂
i∈I Li.

By the dimension of an affine subspace we mean the dimension of the corresponding
linear subspace. We call the 0-, 1-, 2-, (n−1)-dimensional subspaces points, lines, planes
and hyperplanes. A k-dimensional affine subspace may also be called a k-flat.

The next property readily follows from the definition of affine subspaces and the
properties of the inner product.

Remark 1.5. If u ∈ Rn and t ∈ R arbitrary, then the set {v ∈ Rn|〈v, u〉 = t} is a
hyperplane (Figure 22). Furthermore, for any hyperplane H there is some vector u ∈ Rn
and scalar t ∈ R for which H = {v ∈ Rn|〈v, u〉 = t}.

t
‖u‖

H

u

o

Figure 2: Hyperplanes are precisely sets of the form H = {v ∈ Rn|〈u, v〉 = t} with u 6= 0. The vector u
is a normal vector of H and the distance of H and o is |t|/ ‖u‖. If u points away from the origin then
t > 0, while in the opposite case t < 0. The hyperplane passes through the origin iff t = 0.
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Since inner product is a continuous map from Rn to R, the previous remark implies
that for any hyperplane H decomposes the space into two connected, open components,
which we call open half spaces. The unions of open half spaces with the bounding
hyperplane we call closed half spaces.

Definition 1.6. Let G1 = p1+L1 and G2 = p2+L2 be affine subspaces. If for any vectors
v1 ∈ L1, v2 ∈ L2 we have 〈v1, v2〉 = 0, then we say that G1 and G2 are perpendicular or
orthogonal. Two affine subspaces are parallel, if they can be written in the form p1 + L
and p2 + L, where L is a linear subspace (Figure 33).

G2

G1

G3

Figure 3: The affine subspaces G1 and G2 are parallel, and both are perpendicular to G3.

Definition 1.7. Let X ⊂ Rn be a nonempty set. Then the affine hull of X, denoted by
aff(X), is defined as the intersection of all affine subspaces containing X (Figure 44). The
linear hull of X is defined as the affine hull aff(X ∪ {o}). We denote the linear hull of
X by lin(X). The relative interior and relative boundary of X is defined as the interior
and boundary of X, respectively, with respect to the induced topology in aff(X). We
denote them by relint(X) and relbd(X), respectively (Figure 55).

aff(X)

X

Figure 4: The affine hull of X is the intersection of all affine subspaces containing X.

We remark that by Theorem 1.41.4, the affine hull of a set is an affine subspace.
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p

q

X

Figure 5: The relative interior of the closed segment [p, q] ⊂ R2 is the open segment (p, q) = [p, q]\{p, q},
and its relative boundary is {p, q}. In contrast, int([p, q]) = ∅ and bd([p, q]) = [p, q].

Definition 1.8. A point set X is called affinely independent if for any x ∈ X we have
aff(X \{x}) 6= aff X. The points sets that are not affinely independent are called affinely
dependent (Figure 66).

p1

p2
p3

q1

q2

q3

Figure 6: The set {p1, p2, p3} is affinely dependent, while {q1, q2, q3} is affinely indepentent.

Definition 1.9. Let p1, p2, . . . , pk ∈ Rn finitely many points, and let λ1, λ2, . . . , λk ∈

R be real numbers satisfying
k∑
i=1

λi = 1. Then the point
k∑
i=1

λipi is called an affine

combination of the points p1, p2, . . . , pk.

Proposition 1.10. The affine hull of a set X is the set of the affine combinations of
all finite point sets from X.

Proof. Let Y denote the set of all affine combinations of finitely many points in X, and
let p ∈ X be an arbitrary point. Consider the points p1 = p, p2, . . . , pk ∈ X and numbers
λ1, λ2, . . . , λk ∈ R for which

∑k
i=1 λi = 1 is satisfied. According to our conditions:

k∑
i=1

λipi = p1 +

k∑
i=1

λi(pi − p1).

Thus the affine combination can be written as a translate of the point p with a linear
combination of the vectors pi − p. Hence, if L denotes the linear subspace formed by
the linear combinations of the vectors q − p, q ∈ X, then Y = p+ L. As it is clearly an
affine subspace, we have aff(X) ⊆ Y .

On the other hand, if an affine subspace contains X, then it can be written in the
form p+ L for some linear subspace L. The subspace L contains all vectors of the form
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q−p, q ∈ X, and thus it contains their linear combinations as well. Hence, p+L contains
all affine combinations of points of X in the case that p is one of the points. Since any
k-point affine combination is also a (k+ 1)-point affine combination in which one of the
points is p, we have that p+L contains all affine combinations of the points of X. Thus,
Y ⊆ p+ L, implying Y ⊆ aff(X).

Corollary 1.11. A point set X is affinely independent if and only if there is no point
of X that can be written as an affine combination of some other points from X.

Theorem 1.12. Let X = {p1, p2, . . . , pk} ⊂ Rn. Then X is affinely independent if and

only if
k∑
i=1

λipi = 0 and
k∑
i=1

λi = 0 implies λi = 0 for all values of i.

Proof. Assume that a point, say pk, can be written as an affine combination of the

other points; that is, pk =
k−1∑
i=1

λipi, where
k−1∑
i=1

λi = 1. Then, setting λk = −1, we have

0 =
k∑
i=1

λipi and
k∑
i=1

λi = 0.

On the other hand, assume that for some values of the coefficients λi, not all of them

zero, we have 0 =
k∑
i=1

λipi and
k−1∑
i=1

λi = 0. Without loss of generality, we may assume

that λk 6= 0. For any 1 ≤ i ≤ k − 1, let λ′i = − λi
λk

. Then

k−1∑
i=1

λ′i = −

k−1∑
i=1

λi

λk
= −−λk

λk
= 1,

and

k−1∑
i=1

λ′ipi = − 1

λk

k−1∑
i=1

λipi = − 1

λk
(−λkpk) = pk,

and the point set is affinely dependent.

Corollary 1.13. If X ⊂ Rn is affinely independent, then every point of aff(X) can be
uniquely written as an affine combination of some points in X.

Theorem 1.14. If |X| ≥ n+ 2, then X is affinely dependent.

Proof. Assume that p1, p2, . . . , pn+2 ∈ X. Consider the vectors p2 − p1, . . . , pn+2 − p1
(Figure 77). Since the n-dimensional Euclidean space is an n-dimensional vector space,
the above vectors are linearly dependent, that is one of them, say pn+2 − p1, can be
written as a linear combination of the other vectors: pn+2 − p1 =

∑n+1
i=2 λi(pi − p1). Let

λ1 = 1−
n+1∑
i=2

λi. Then clearly
n+1∑
i=1

λi = 1. On the other hand,

pn+2 = p1 +

n+1∑
i=2

λi(pi − p1) =

(
1−

n+1∑
i=2

λi

)
p1 +

n+1∑
i=2

λipi =

n+1∑
i=1

λipi,
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that is, X is affinely dependent.

p1

p2

p3

p4

p2 − p1

p3 − p1

p4 − p1

o

Figure 7: Any n+2 points p1, p2, . . . , pn+2 in Rn are affinely dependent, since the n+1 difference vectors
p2 − 1, . . . , pn+2 − p1 are necessarily linearly independent.

Corollary 1.15. Every affine subspace of the space Rn is the affine hull of a most n+ 1
points.

2 Convex combination, convex hull

We continue with a new topic.

Definition 2.1. Let p1, p2, . . . , pk ∈ Rn. If a point p can be written in the form
k∑
i=1

λipi,∑k
i=1 λi = 1, where λi ≥ 0 for all is, then we say that p is a convex combination of the

points p1, p2, . . . , pk.

Definition 2.2. The set of the convex combinations of the points p, q ∈ Rn is called the
closed segment with endpoints p and q. If p 6= q, then the set [p, q] \ {p, q} is called the
open segment with endpoints p and q, and it is denoted by (p, q).

Definition 2.3. Let K ⊆ Rn. The set K is called convex, if for arbitrary p, q ∈ K we
have [p, q] ⊆ K (see Figures 88 and 99).

Figure 8: A convex set. The line segment joining any two of its points is also contained in the set.

Remark 2.4. The intersection of arbitrarily many convex sets is convex (Figure 1010).
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Figure 9: A set that is not convex. The line segment joining the two marked points is not contained in
the set.

Figure 10: The intersection of arbitrarily many convex sets is convex.

Theorem 2.5. Let K ⊆ Rn be a closed, convex set. Then K coincides with the inter-
section of the closed half spaces containing K.

Proof. Let K ′ denote the intersection of the closed half spaces containing K. Clearly,
K ⊆ K ′. We need to show that K ′ ⊆ K.

Suppose for contradiction that there is some point p ∈ K ′ \K. Consider the function
q 7→ dist(p, q). We show that this function attains its minimum on K. If K is bounded,
then it is compact, and thus the statement follows from the continuity of the distance
function. If K is not bounded, then let us choose a closed ball B centered at p that
contains a point from K. By the compactness of K ∩B the function dist(P, .) attains its
minimum on (K ∩B), and this minimum coincides with the minimum attained on K.

Let dist(p, q) be the minimum of the function dist(p, .), where q ∈ K, and let H
denote the hyperplane containing q and perpendicular to q − p. Since the minimum is
positive by the choice of p, p /∈ H. On the other hand, if the open half space bounded by
H and containing q contains some point r ∈ K, then the segment [q, r], which belongs to
K by the convexity of K, contains a point of K closer to p than q, which contradicts the
choice of q (Figure 1111). Thus, the closed half space bounded by H and not containing p
contains K, which contradicts the choice of p.

It is easy to see that the closure of a convex set is convex. This yields the following
remark.

Corollary 2.6. If K ⊆ Rn convex, then for every boundary point of K there is a
hyperplane H containing it such that K is contained in one of the two closed half spaces
bounded by H.
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H

p

r

q
K

Figure 11: The set K is closed, therefore it has a point q ∈ K closest to p. Since p /∈ K, q 6= p. The
hyperplane H through q and perpendicular to q − p divides the space into two half spaces. If there was
a point r ∈ K in the open half space containing p then, by convexity, K would also have a point closer
to p than q, a contradiction.

Definition 2.7. Let X ⊂ Rn be a nonempty set. Then the intersection of all convex sets
that contain X is called the convex hull of X, and is denoted by conv(X) (Figure 1212).

X

conv(X)

Figure 12: The shaded region is the convex hull of X (black).

Theorem 2.8. Let X ⊂ Rn be a nonempty set. Then the convex hull of X is the set of
the convex combinations of finite subsets of X.

Proof. Let p =
k∑
i=1

λiai and q =
m∑
j=1

µjbj be two arbitrary convex combinations of points

from X. Then a point of the segment [p, q] can be written as s = αp + βq for some

α, β ≥ 0 and α + β = 1. But then s = α
k∑
i=1

λiai + β
m∑
j=1

µjbj =
k∑
i=1

αλiai +
m∑
j=1

βµjbj ,

which is a convex combination of the points a1, a2, . . . , ak, b1, b2, . . . , bm, and hence, the
set of convex combinations is convex.

Now, by induction on the number k of points, we prove that any convex set K
containing X contains all convex combinations of points of X. Since points of a segment
are convex combinations of the endpoints, for k = 2 the statement is follows from the
convexity ofX. Assume thatK contains all k-element convex combinations, and consider

some convex combination p =
k+1∑
i=1

αiai. If a coefficient in it is zero, we can apply the

induction hypothesis directly. Thus, we may assume that e.g. 0 < αk+1 < 1. Then, let

βi = αi
1−αk+1

for all i = 1, 2, . . . , k. Note that due to
k∑
i=1

βi = 1, the point q =
k∑
i=1

βiai is
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an element of K. As p = (1− αk+1)q + αk+1ak+1 is a point of the segment [q, ak+1], we
also have p ∈ K.

3 Radon’s, Carathéodory’s and Helly’s theorems

We continue the class with proving three fundamental theorems of convex geometry:
Radon’s, Carathéodory’s and Helly’s theorems.

Theorem 3.1 (Radon). Let X ⊂ Rn be a set containing at least n+ 2 points. Then X
can be decomposed into two parts whose convex hulls have a nonempty intersection.

Figure 13: Illustration of Radon’s theorem in the plane with 4 and 5 points.

Proof. Let p1, p2, . . . , pm ∈ X, where m > n + 1. Consider the following homogeneous
system of linear equations:

m∑
i=1

αi = 0

m∑
i=1

αipi = 0

This system of equations consists of n+ 1 equations and m > n+ 1 variables, and hence
it has a nontrivial solution (β1, β2, . . . , βm).

Let V = {i|βi > 0} and W = {i|βi ≤ 0}. Observe that because of the first equation
of the system we have V 6= ∅ 6= W , as otherwise βi = 0 for all values of i, but the solution
is nontrivial. We can also observe that by the same equation

∑
i∈V

βi =
∑
i∈W

(−βi). Let

β > 0 denote the common value of the two sides in the above equation. Then the point

p =
∑
i∈V

βi
β
pi =

∑
i∈W

−βi
β
pi

can be written as convex combinations of points from both {pi|i ∈ V },and {pi|i ∈W},
and thus, it lies in the intersection of the convex hulls of these two disjoint sets.

It can be easily shown that if X is an affinely independent set of n + 1 points for
which aff X = Rn, then for X the above statement does not hold. Thus, the quantity
n+ 2 in the theorem cannot be replaced by n+ 1.
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Theorem 3.2 (Carathéodory). Let X ⊂ Rn be an arbitrary nonempty set. If p ∈
convX, then X has a subset Y consisting of at most n+1 points, satisfying p ∈ conv(Y ).

X
p

Figure 14: The point p in the convex hull of X ⊆ R2 can be expressed as a convex combination of three
points of X.

Proof. Assume that m > n+1 is the smallest positive integer for which p can be written
as a convex combination of m points of X. Let

p =
m∑
i=1

αipi, (1)

where
m∑
i=1

αi = 1, and for i = 1, 2, . . . ,m we have αi ≥ 0 and pi ∈ X. Since m is the

smallest positive integer satisfying these conditions, we have αi > 0 for all values of i.
By Radon’s theoremRadon’s theorem, the set {pi|i = 1, 2, . . . ,m} can be decomposed into two disjoint

sets whose convex hulls have nonempty intersection. In other words, there are disjoint
sets V and W for which V ∪W = {1, 2, . . . ,m}, and nonnegative numbers βi for which∑
i∈V

βi =
∑
i∈W

βi = 1 and
∑
i∈V

βipi =
∑
i∈W

βipi. Thus, by introducing the notation γi = βi

for i ∈ V and γi = −βi for i ∈W , we obtain

m∑
i=1

γipi = 0, and
m∑
i=1

γi = 0. (2)

Let k be an index such that γk < 0 and

αk
γk
≥ αi
γi

(3)

for all value of i with γi < 0.

Adding
(
−αk
γk

)
times the equation (22) to (11), we obtain a linear combination

p =
m∑
i=1

(
αi −

αk
γk
γi

)
pi

in which the sum of the coefficients is 1. On the other hand, every coefficient is nonneg-
ative, since it is clearly satisfied if γi ≥ 0, and in the opposite case it is the consequence
of the inequality in (33). As the kth coefficient is zero, we expressed p as a convex
combination of at most m− 1 points, which is a contradiction.
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Observe that if X = {p1, p2, . . . , pn+1} is affinely independent in Rn, then the point

p = 1
n+1

n+1∑
i=1

pi is in conv(X), but it is not contained in the convex hull of any proper

subset of X. We can also observe that while Carathéodory’s theoremCarathéodory’s theorem describes how one
can build up the convex hull of a set ‘from inside’, that is from the points of the set,
Theorem 2.52.5 and Corollary 2.62.6 describe how to get to the convex hull ‘from outside’.

Definition 3.3. The convex hulls of k-element subsets of Rn with k ≤ n+ 1 are called
simplices. If the point set is affinely independent, we call the simplex nondegenerate.
Then the elements of the point set are the vertices of the nondegenerate simplex, and
the convex hull of two vertices is an edge of the simplex. If k = n+ 1, then the convex
hull of n vertices is a facet of the simplex. If all edges of a nondegenerate simplex are of
equal length, we call the simplex regular.

In the following we introduce an application of Carathéodory’s theoremCarathéodory’s theorem.

Theorem 3.4. Let H ⊂ Rn be compact. Then conv(H) is also compact.

Proof. Let

∆ =

{
(α1, α2, . . . , αn+1) ∈ Rn+1

∣∣∣∣∣
n+1∑
i=1

αi = 1 and αi ≥ 0, i = 1, 2, . . . , n+ 1

}
.

Observe that ∆ is compact. Consider the map f : Rn+1 × (Rn)n+1 → Rn defined as

f(α1, . . . , αn+1, p1, . . . , pn+1) =

n+1∑
i=1

αipi

for all αi ∈ R, pi ∈ Rn (i = 1, 2, . . . , n+ 1).
Then f is a continuous map and f(∆ ×Hn+1) = convH. As the direct product of

compact sets is compact, the image of a compact set under a continuous map is compact,
we have that conv(H) is compact.

Before describing another application of Carathéodory’s theoremCarathéodory’s theorem, we verify another
statement that can often be used in convex geometry problems.

Proposition 3.5. Let H be a closed half space bounded by the hyperplane H0, and let
X ⊂ H be arbitrary. Then conv(X) ∩H0 = conv(X ∩H0) (Figure 1515).

Proof. Since H0 is convex and X ∩H0 ⊆ X, we obtain conv(X ∩H0) ⊆ conv(X) ∩H0.
We show that conv(X) ∩H0 ⊆ conv(X ∩H0).

Let p ∈ conv(X) ∩H0 be arbitrary. Then, by Theorem 2.82.8 with a suitable choice of
p1, . . . , pk ∈ X, α1, . . . , αk > 0,

∑k
i=1 αi = 1, we have p =

∑k
i=1 αipi. As H is a closed
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X

H0H

conv(X) ∩H0 = conv(X ∩H0)conv(X)

Figure 15: If X is contained in one of the half spaces bounded by the hyperplane H0, then the intersection
of its convex hull with H0 is conv(X ∩H0)

half space, there are some α ∈ R and u ∈ Rn such that H = {x ∈ Rn|〈x, u〉 ≥ α} and
H0 = {x ∈ Rn|〈x, u〉 = α}. Thus,

α = 〈u, p〉 =

〈
u,

k∑
i=1

αipi

〉
=

k∑
i=1

αi〈u, pi〉 ≥
k∑
i=1

αiα = 1,

with equality if and only if 〈u, pi〉 = α for all values of i. Consequently, pi ∈ H0 ∩X for
all is, from which p ∈ conv(X ∩H0).

Theorem 3.6 (colorful Carathéodory theorem). Let X1, X2, . . . , Xn+1 ⊂ Rn be compact
sets. Assume that for any i we have o ∈ convXi. Then there are some points pi ∈ Xi

such that o ∈ conv{p1, p2, . . . , pn+1} (see Figures 1616 and 1717).

In the theorem, Xi denotes the set of points with ‘color i’. Thus, the statement
guarantees that there is a ‘rainbow simplex’ containing the origin.

X1

X2

X3

o

Figure 16: The origin is contained in conv(Xi) for all i.

Proof. We prove by contradiction. Suppose that there is no ‘rainbow simplex’ containing
the origin. Let Y = conv(p1, p2, . . . , pn+1), pi ∈ Xi be a ‘rainbow simplex’ whose distance
from o is minimal. Since the sets Xi are compact, such a simplex exists. Let q be the
(unique) point of Y whose distance from o is minimal, and let H denote the closed half
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X1

X2

X3

o

Figure 17: A rainbow simplex containing the origin.

space not containing o, which contains q in its boundary and whose bounding hyperplane
is perpendicular to q. If Y had a point in the complement of H, then Y would contain
a point closer to o than q, and thus, Y ⊂ H (Figure 1818).

If Y had a vertex pi which is not in the boundary of H, then o ∈ convXi yields that
there is some point p′i ∈ Xi not in H. But then q ∈ conv{p1, p2, . . . , pi−1, pi+1, . . . , pn+1}
by Proposition 3.53.5, and hence conv(p1, . . . , pi−1, p

′
i, pi+1, . . . , pn+1) is a simplex which

has a point closer to o than q, a contradiction. Thus Y is contained in the bounding
hyperplane of H. But then, applying Carathéodory’s theoremCarathéodory’s theorem for this hyperplane, we
obtain that for a suitable index i, we have that q ∈ conv{p1, . . . , pi−1, pi+1, . . . , pn+1},
and thus, similar to the previous case, we may replace pi with a point p′i ∈ Xi in the
complement of H, we obtain a simplex closer to o.

o

H

qp1

pi

pn+1

p′i

Y

Figure 18: If Y is a rainbow simplex not containing the origin, then it is contained in the half space H.
In the proof of Theorem 3.63.6 we show that in this case there is a vertex pi that may be replaced with
p′i /∈ H, leading to a rainbow simplex closer to o.

We continue with the description of an important theorem of convex geometry, and
with an introduction of one of its applications.

Theorem 3.7 (Helly, finite). Let K be a finite family of at least n + 1 convex sets in
Rn. If any (n+ 1) elements of K have a nonempty intersection, then all elements of K
have a nonempty intersection.
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Figure 19: Helly’s theorem in the plane. If any three members of a finite family of convex sets have a
nonempty intersection, then the family itself has nonempty intersection.

Proof. Let the cardinality of K be |K| = k. We prove the theorem by induction on k.
The statement clearly holds if k = n + 1. Let us assume that it holds for all families
with k elements, and let us consider a family K consisting of k + 1 convex sets in Rn
with the property that any n + 1 elements of K have a nonempty intersection. By the
induction hypothesis, for any K ∈ K there is a point pK with the property that pK is
contained in every element of K but K. Let X = {pK |K ∈ K} (Figure 2020).

Radon’s theoremRadon’s theorem implies that X can be written as the disjoint union of two sets X1,
X2, whose convex hulls have a nonempty intersection. Let p ∈ convX1 ∩ convX2. As
pK ∈ K ′ for every K ′ 6= K, K ′ ∈ K, we have that if pK ∈ X1, then X2 ⊂ K. This yields
by the convexity of K that convX2 ⊂ K. We obtain similarly that if pK ∈ X2, then
convX1 ⊂ K. Now, since p ∈ convX1 ∩ convX2, from this it follows that p ∈ K for
every K ∈ K; that is, the intersection of all elements of K is not empty.

K1

K2

K3 K4

pK1

pK2

pK3

pK4

Figure 20: Illustration of the induction step in the proof of Theorem 3.73.7. Any three of the convex
sets K1,K2,K3,K4 intersect, therefore there exist points pKi contained in all except possibly in Ki.
By Radon’s theorem, the set of these four points can be partitioned into two subsets with nonempty
intersection. Any point in the intersection is contained in K1 ∩K2 ∩K3 ∩K4.

The example of the n+ 1 facets of a simplex shows that there are families of convex
sets in Rn in which every n elements have a nonempty intersection, but there is no point
contained in all elements of the family.

We have seen that Radon’s theorem implies both Carathéodory’sCarathéodory’s and Helly’s theoremHelly’s theorem.
Nevertheless, it can be shown that the Radon’s theorem can be derived from any of the
two latter theorems, which implies that these theorems are equivalent.
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Helly’s theorem also has a variant for families with infinitely many members.

Theorem 3.8 (Helly, infinite). Let K be a family of at least n + 1 closed, convex sets
in Rn such that at least one member of K is compact. Assume that any n+ 1 elements
of K have a nonempty intersection. Then there is a point which is contained in every
element of K.

Proof. According to the previous theorem it is sufficient to examine families K with
infinitely many members, and we can also assume that any finitely many elements of K
have a nonempty intersection. Assume that there is no point belonging to every element
of K. Let K ∈ K be a compact, closed set. Observe that all elements of the family
K′ = {Rn \ C|C ∈ K} are open. On the other hand, since there is no point that belongs
to every member of K, the family K′ is an open cover of Rn, and in particular, K.
As K is compact, K′ has finitely many elements whose union covers K. But then the
complements of these sets has no common point that belongs to K, which contradicts
our assumption that any finitely many elements of K have a common point.

Our next examples show that the statement in the theorem does not hold if K has
elements that are not closed, or if K has no compact element.

Example 3.9.

(i) Let Ki =
{

(x, y) ∈ R2
∣∣∣(x− 1

i

)2
+ y2 ≤ 1

i2

}
for every i = 1, 2, 3, . . ., and let K0 ={

(x, y) ∈ R2
∣∣∣(x− 2)2 + y2 < 4

}
(Figure 2121). It can be easily seen that any finitely

many elements of the family K = {Ki|i = 0, 1, 2, . . .} have a nonempty intersection,
but the intersection of all elements is the empty set.

(ii) Let Ki =
{

(x, y) ∈ R2
∣∣y ≥ i} be for every i = 1, 2, 3, . . . (Figure 2222). Then any

finitely many elements of K = {Ki|i = 1, 2, . . .} have a nonempty intersection, but
the intersection of all elements is empty.

K0K1K2

Figure 21: An infinite family of bounded convex sets with empty intersection: Ki is the closed disk with
center ( 1

i
, 0) and radius 1

i
, K0 is the open disk with center (2, 0) and radius 2.
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K1

K2

K3

K4

...

Figure 22: An infinite family (Ki)
∞
i=1 of closed half planes with the property that any finite subfamily

has nonempty intersection, but
⋂∞
i=1Ki = ∅.

4 Jung’s theorem and Minkowski sums

We present an application of Helly’s theorems.

Definition 4.1. The diameter of a bounded set A ⊂ Rn is the supremum of the distances
of all pairs of points from the set.

Theorem 4.2 (Jung). A set in Rn having diameter d can be covered by a closed Eu-

clidean ball of radius d ·
√

n
2(n+1) .

We remark that the quantity in the theorem is the circumradius of the regular n-
dimensional simplex of edge length d.

Proof. Let the diameter of S ⊂ Rn be d, and for every p ∈ S, let Gp denote the set of

points x in Rn with the property that the closed ball of radius d ·
√

n
2(n+1) and center

x covers p. Note that Gp is the closed ball of radius d ·
√

n
2(n+1) centered at p (both

conditions are equivalent to saying that ‖x− p‖ ≤ d ·
√

n
2(n+1)), and thus, it is compact

and convex (Figure 2323). Hence, if we can verify that
k⋂
i=1

Gpi 6= ∅ for any p1, p2, . . . , pk ∈ S

and k ≤ n + 1, then from Helly’s theoremHelly’s theorem (infinite version) it follows that
⋂
p∈S

Gp 6= ∅,

which readily yields our theorem.
Let p1, p2, . . . , pk ∈ S with k ≤ n + 1, and let q be the center of the smallest

closed ball containing the points p1, p2, . . . , pk. We show that the radius of G is at

most r ≤ d
√

n
2(n+1) . Observe that q ∈ conv{p1, p2, . . . , pk}, as otherwise there is a

smaller ball that contains the points (Figure 2424). In addition, since we have only finitely
many points, G is the smallest ball that contains those pis that are contained in its
boundary, and thus, we may assume that ‖pi − q‖ = r for all values of i. Let vi = pi− q
for i = 1, . . . , k. Then o ∈ conv{v1, v2, . . . , vk} As the diameter of S is d, we have

‖vi − vj‖ = dist(pi, pj) ≤ d for all i and j (Figure 2525). Write o =
k∑
i=1

αivi, where αi ≥ 0
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and
k∑
i=1

αi = 1. For all i we have

αir
2 = αi ‖vi‖2 = 〈αivi, vi〉 = 〈−

∑
j 6=i

αjvj , vi〉 = −
∑
j 6=i

αj〈vj , vi〉

= −
∑
j 6=i

αj
1

2

(
‖vi‖2 + ‖vj‖2 − ‖vi − vj‖2

)
=
∑
j 6=i

αj

(
1

2
‖vi − vj‖2 − r2

)

≤
∑
j 6=i

αj

(
d2

2
− r2

)
= (1− αi)

(
d2

2
− r2

)
,

therefore

r2 ≤ (1− αi)
d2

2
.

Choosing an index i such that αi ≥ 1
k , we obtain

r2 ≤ k − 1

2k
d2,

from which, as k ≤ n+ 1, the inequality

r2 ≤ k − 1

2k
d2 ≤ n

2n+ 2
d2

follows.

Figure 23: A set of points can be covered with a closed ball of radius R (shaded area) if and only if the
family of balls of radius R, centered at the points, has a nonempty intersection.

5 Minkowski sum and support function

To continue, recall the definition of the Minkowski sum of two sets from the first lecture.
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q

q′

p1

p2

p3

Figure 24: The point q is not contained in the convex hull of {p1, p2, p3}, therefore it is not the center of
the smallest ball containing these points. The green ball (centered at q′) has smaller radius and contains
all three points.

q

p1

p2p3

p4

v1

v2v3

v4

G

Figure 25: G is the smallest ball containing the points pi on its boundary. The vectors vi = pi−q satisfy
‖vi‖ = r, ‖vi − vj‖ = dist(pi, pj), and o ∈ conv{v1, . . . , vk}.

Definition 5.1 (Definition 1.11.1, repeated). Let V1 and V2 be two point sets, and let
λ ∈ R. Then

V1 + V2 = {v1 + v2|v1 ∈ V1, v2 ∈ V2}

is the Minkowski sum of the two sets and

λV1 = {λv1|v1 ∈ V1}

is the multiple of V1 by λ.

Remark 5.2. To ‘draw’ the Minkowski sum of two sets we should think it over that
by definition, V1 + V2 =

⋃
v1∈V1 (v1 + V2), implying that the sum of the two sets can be

obtained as the region ‘swept’ by the translates of one of the sets where the translation
vectors run over the other set (Figure 2626).

Proposition 5.3. If K,L ⊂ Rn are convex, then K + L is convex (Figure 2727).

Proof. We need to show that the segment connecting any two points of K + L belongs
to K + L. In other words, we need to show that if pK , qK ∈ K and pL, qL ∈ L, then
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+ =

+ =

+ =

+ =

+ =

+ =

+ =

Figure 26: Examples of Minkowski sums

[pK+pL, qK+qL] ⊆ K+L. Let t ∈ [0, 1] be arbitrary. Then t(pK+qK)+(1−t)(pL+qL) =
(tpK + (1− t)qK) + (tpL + (1− t)qL), where by the convexity of K and L, we have
tpK+(1−t)qK ∈ K and tpL+(1−t)qL ∈ L. Thus, t(pK+qK)+(1−t)(pL+qL) ∈ K+L,
from which the statement follows.

+ =

Figure 27: The Minkowski sum of two convex sets is convex

Definition 5.4. Let A ⊂ Rn be an arbitrary bounded set. Then the function

hA : Rn → R, hA(x) = sup {〈x, y〉|y ∈ A}

is called the support function of A.

Example 5.5.
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(i) If A ⊆ R is bounded and a = inf A, b = supA, then

hA(x) = max{ax, bx}.

(ii) Let B denote the unit ball in Rn. Then

hB(x) = sup {〈x, y〉|y ∈ Rn, ‖y‖ ≤ 1} = ‖x‖ .

(iii) Let A =
{

(y1, y2) ∈ R2
∣∣y21 + y22 ≤ 1

}
∪ ([0, 1]× [0, 1]). Then

hA(x) = max{‖x‖ , x1 + x2}.

o

(iv) Let A =
{

(y1, y2) ∈ R2
∣∣0 ≤ y21 ≤ y2 ≤ 1, 0 ≤ y1

}
⊆ R2. Then

hA(x) =

{
− x21

4x2
if 0 < x1 ≤ −2x2

max{0, x2, x1 + x2} otherwise

o

Proposition 5.6. Let A,B ⊆ Rn be bounded sets.

(i) if A ⊆ B then hA(x) ≤ hB(x) holds for all x ∈ Rn,

(ii) if B is also closed and convex, and hA(x) ≤ hB(x) holds for all x ∈ Rn, then
A ⊆ B.

In particular, if A and B are compact and convex, then A ⊆ B ⇐⇒ ∀x ∈ Rn : hA(x) ≤
hB(x).

Proof. (i)(i): Suppose that A ⊆ B. Then

hA(x) = sup {〈x, y〉|y ∈ A}
≤ sup {〈x, y〉|y ∈ B}
= hB(x),

since the supremum over a subset is at most the supremum over the larger set.
(ii)(ii): Suppose that B is closed and convex, and A 6⊆ B. Then there is a point

p ∈ A \ B. But then by Theorem 2.52.5 and Remark 1.51.5 there is some u ∈ Rn and α ∈ R
such that 〈u, p〉 > α, and 〈u, x〉 ≤ α for every x ∈ B (see Figure 2828). But from this
hA(u) > hB(u) follows.
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A H

u

p

B

Figure 28: If B is closed and convex, and p ∈ A \ B, then there exist u ∈ Rn and α ∈ R such that
〈u, p〉 > α, and 〈u, x〉 ≤ α for every x ∈ B. This implies hB(u) ≤ α < hA(u).

Theorem 5.7. Let A ⊂ Rn be an arbitrary bounded set containing o. Then the support
function hA of A is:

(i) convex, that is, h(tx + (1 − t)y) ≤ th(x) + (1 − t)h(y) for every x, y ∈ Rn and
t ∈ [0, 1];

(ii) h nonnegative, and for any λ ≥ 0 and x ∈ Rn, we have h(λx) = λh(x).

Furthermore, for any function h satisfying properties (i)(i) and (ii)(ii), there is a unique
compact, convex set A ⊂ Rn, containing o, whose support function is h.

Proof. Clearly,

hA(tx+ (1− t)y) = sup {〈tx+ (1− t)y, z〉|z ∈ A}
≤ t sup {〈x, z〉|z ∈ A}+ (1− t) sup {〈y, z〉|z ∈ A}
= thA(x) + (1− t)hA(y),

that is, hA is convex. The second property readily follows from the properties of the
inner product.

Now, let h be a function satisfying properties (i)(i) and (ii)(ii), and let

A = {y ∈ Rn|〈x, y〉 ≤ h(x) for every x ∈ Rn} .

As for any fixed x, the set of points y satisfying the inequality 〈x, y〉 ≤ h(x) is a closed
half space containing o, the set A, which is the intersection of such sets, is a closed,
convex set containing o. Denoting by ei the unit vector pointing in the ith coordinate
direction, for all y ∈ A the ith coordinate of y satisfies

〈ei, y〉 ≤ h(ei)

and

〈ei, y〉 = −〈−ei, y〉 ≥ −h(−ei),

therefore A is bounded. Thus, we have seen that A is compact. On the other hand, for
any vector z ∈ Rn, we have hA(z) = sup {〈z, y〉|y ∈ A} ≤ h(z) by the definition of A.
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We will show that hA(z) ≥ h(z), that is, that there is a point y ∈ A, for which
〈y, z〉 = h(z). Since this statement clearly holds if z = o or h(z) = 0, we assume
that z 6= o and h(z) > 0. Let us define the epigraph of h as the closed set Eh =
{(x, α)|h(x) ≤ α} ⊆ Rn × R (note that this set is the region ‘above’ the graph of h
in Rn+1, see Figure 2929). If (x, α), (y, β) ∈ Eh and t ∈ [0, 1], then h(tx + (1 − t)y) ≤
th(x)+(1− t)h(y) ≤ tα+(1− t)β, implying that Eh is convex, and clearly, if (x, α) ∈ Eh
and λ ≥ 0, then (λx, λα) ∈ Eh. By the definition of epigraph, (z, h(z)) is a boundary
point of Eh, and hence, by Corollary 2.62.6 and Remark 1.51.5, there are (y, β) ∈ Rn×R and
α ∈ R which satisfy 〈y, w〉+ βγ ≤ α for any (w, γ) ∈ Eh, and 〈y, z〉+ βh(z) = α. Since
z 6= o, from the positive homogeneity of Eh it follows that α = 0. On the other hand,
since h is defined on the whole space Rn, we have β 6= 0, and thus, with a suitable choice
of y we may assume that β = −1. But from this 〈y, z〉 = h(z), which is what we wanted
to prove. Thus, hA = h.

Finally, the support functions of different compact, convex sets containing o are
different by Proposition 5.65.6.

(z, h(z))

(y, β)

Eh

Rn

R

Figure 29: The epigraph of h (blue region) is contained in the closed half space (gray) with outer normal
vector (y, β) ∈ Rn × R.

Proposition 5.8. For any bounded sets K,L ⊂ Rn, we have hK+L = hK + hL.

Proof. If x ∈ Rn, then

hK+L(x) = sup {〈x, y〉+ 〈x, z〉|y ∈ K, z ∈ L}
= sup {〈x, y〉|y ∈ K}+ sup {〈x, z〉|z ∈ L}
= hK(x) + hL(x).
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6 Separation

Remark 6.1. Let L1, L2 ⊆ Rn be linear subspaces with dim(L1) = k and dim(L2) = n−k
for some 0 ≤ k ≤ n, and let L1 ∩L2 = {o}. Then the union of a basis of L1 and a basis
of L2 is a basis of Rn, and hence, for any point p ∈ Rn there are unique points p1 ∈ L1,
p2 ∈ L2 satisfying p = p1 + p2.

Definition 6.2. Let L1, L2 ⊆ Rn be linear subspaces with dim(L1) = k and dim(L2) =
n − k for some 0 ≤ k ≤ n, and let L1 ∩ L2 = {o}. For any x ∈ Rn let x1 ∈ L1,
x2 ∈ L2 denote those unique points that satisfy x = x1 +x2 (Figure 3030). Then the linear
transformation π : Rn → L2, π(x) = x2 is called projection onto L2 parallel to L1. If
L1 is the orthogonal complement of L2, then we say that π is the orthogonal projection
onto L2.

L1

L2

o

x

x1 x2

Figure 30: If the linear subspaces L1, L2 ⊆ Rn satisfy L1 ∩ L2 = {0} and dim(L1) + dim(L2) = n, then
any vector x ∈ Rn can be uniquely decomposed as x = x1 + x2 where x1 ∈ L1 and x2 ∈ L2.

From the definition it is clear that if dim(L1) = k and L is an affine subspace of
dimension m in L2, then π−1(L) is an (m+ k)-dimensional affine subspace in Rn.

Remark 6.3. If the conditions of the previous remark are satisfied for the linear sub-
spaces L1, L2 ⊆ Rn then for any p1, p2 ∈ Rn, the intersection of p1 +L1 and p2 +L2 is a
singleton. Indeed, by the previous remark, p1 can be decomposed to the sum of a vector
from L1 and a vector from L2,and hence, as x + L1 = L1 if x ∈ L1, we may assume
that p1 ∈ L2. Similarly, we may assume that p2 ∈ L1. Thus, if x ∈ Rn is contained in
both subspaces, then, writing it in the form x = x1 + x2, x1 ∈ L1, x2 ∈ L2, the previous
remark implies that x1 = p2 and x2 = p1; on the other hand p1 + p2 is an element of
both subspaces. Based on this observation, projection can be defined not only for linear
subspaces, but also for affine subspaces.

Proposition 6.4. Let L1, L2 ⊆ Rn be linear subspaces with dim(L1) = k and dim(L2) =
n−k for some 0 ≤ k ≤ n, and let L1∩L2 = {o}. Let π be the projection onto L2 parallel
to L1. Then for any open/compact/convex set X ⊂ Rn, π(X) is open/compact/convex,
respectively, and for any open/closed/convex set Y ⊆ L2, the set π−1(Y ) is open/closed/
convex, respectively.

Proof. For any point x ∈ Rn the projection of a neighborhood of x is a neighborhood of
π(x) in L2, and hence, if X ⊆ Rn open, then π(X) is also open. Similarly, the projection
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of a closed segment is the closed segment connecting the projections of the endpoints,
which yields that if X is convex, then so is π(X). The statement for the projection of
a compact set follows from the observation that π is a continuous function, and thus,
the image of a compact set is compact. Similarly, it also follows that the preimage of
an open/closed set is open/closed, respectively. Now, if Y ⊂ L2 is convex, then for any
p, q ∈ Y choose some points p′, q′ ∈ Rn π(p′) = p, π(q′) = q. As π([p′, q′]) = [p, q] ⊆ Y
by the convexity of Y , we clearly have [p′, q′] ⊆ π−1([p, q]), implying that π−1(Y ) is
convex.

Definition 6.5. Let A,B ⊆ Rn. Let H be a hyperplane, and let H+ and H− be the
two closed half spaces bounded by H. We say that H separates A and B if A ⊆ H+

and B ⊆ H−, or B ⊆ H+ and A ⊆ H− (Figure 3131). If H separates A and B, and
A ∩ H = B ∩ H = ∅, then we say that H strictly separates A and B (Figure 3232). If
A ⊆ H, and B ⊆ H+ or B ⊆ H−, then we say that H isolates A from B (Figure 3333).
If, in addition, B ∩H = ∅, then we say that H strictly isolates A from B (Figure 3434).

H

A

B

Figure 31: The hyperplane H separates A and B.

H

A

B

Figure 32: The hyperplane H strictly separates A and B.

H

A

B

Figure 33: The hyperplane H isolates A from B.
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H

A

B

Figure 34: The hyperplane H strictly isolates A from B.

Theorem 6.6 (Isolation theorem). Let K ⊆ Rn be an open, convex set, and let o /∈ K.
Then there is a hyperplane H that isolates o from K.

We remark that if a hyperplane H isolates of from K, then by the openness of K it
also strictly isolates o from K.

Proof. The statement is trivial if n = 1. First, we prove it for n = 2. Let S1 be the
set of unit vectors in R2, i.e. let it be the boundary of the circular disk centered at o
and with unit radius. Let p : R2 \ {o} → S1 be the central projection onto S1, i.e. let
p(v) = v

‖v‖ . Since K is convex, therefore it is connected, and thus, p(K) is also connected

(Figure 3535). It is also clear that since K is open, the set p(K) is also open. Thus, p(K)
is an open circular arc in S1. If p(K) contains two opposite points u,−u, then there
would be positive real numbers λ1, λ2 > 0 with λ1u,−λ2u ∈ K. But this would imply
by the convexity of K that o ∈ K, which contradicts our assumptions. Hence, p(K)
does not contain opposite points, which yields that the length of p(K) is at most π, or
in other words, there are opposite points u,−u ∈ S1 such that neither one belongs to
p(K). This yields that there is a line through o disjoint from K.

If n > 2, we prove the statement by induction on n. Assume that the statement
holds in Rk for every 1 ≤ k < n.

Consider a plane P through o. Since P ∩K is an open, convex set, we may apply
the case n = 2 of the statement and obtain a line L ⊂ P through o disjoint from K.
Let H = L⊥ be the orthogonal complement of L. Let π be the orthogonal projection
onto H parallel to L (Figure 3636). Then by Proposition 6.46.4, π(K) is an open, convex set
in H, and thus, by the induction hypothesis, there is some (n − 2)-dimensional linear
subspace G ⊂ H (n − 2) disjoint from π(K). But then π−1(G) is a hyperplane H ′ in
Rn, which contains o and is disjoint from π−1(π(K)), and in particular from K. Thus,
by the convexity of K, H ′ isolates o from K.

The question arises whether a point can be isolated from convex sets in general. To
be able to answer this question, we first prove some lemmas.

Lemma 6.7. If K ⊆ Rn is convex and int(K) 6= ∅, then K ⊆ cl(int(K)).

This statement is clearly false if int(K) = ∅.
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o

p(K) K

Figure 35: The image of K under the map p(v) = v
‖v‖ is an open circular arc of length at most π.

Proof. Let p ∈ K and q ∈ int(K) be arbitrary. As q ∈ intK, there is some ε > 0
such that the neighborhood of q of radius ε is a subset of K. But then for any point

r ∈ (p, q), the neighborhood of r of radius
‖r−p‖
‖q−p‖ ε is a subset of K (Figure 3737), implying

that (p, q) ⊂ int(K). Thus, p ∈ cl(int(K)).

Lemma 6.8. If K ⊂ Rn is convex and int(K) = ∅, then dim(K) < n, or in other words,
there is a hyperplane H with K ⊆ H.

Proof. The proof is based on the observation that if the points p1, p2, . . . , pn+1 are
affinely independent, then the interior of conv{p1, . . . , pn+1} is not empty: indeed, if,
e.g. 1

n+1

∑n+1
i=1 pi is a boundary point of the convex hull, then by the compactness of

the convex hull (Theorem 3.43.4) according to Corollary 2.62.6, there is a closed half space
containing the convex hull and containing the above point in its boundary, but then by
Proposition 3.53.5 the bounding hyperplane of this half space contains all of the pis, which
contradicts our assumption that they are affinely independent.

Now, let p1, . . . , pk an affinely independent point system of maximal cardinality in K.
Then, by the previous observation, k ≤ n, implying that there is a hyperplane H con-
taining all of the points. If K has some point p /∈ H, then it follows from Corollary 1.111.11
and Theorem 1.121.12 that p1, . . . , pk, p are affinely independent, which is in contradiction
with the choice of the point system. Thus, K ⊆ H.

Theorem 6.9 (Isolation theorem 2). Let K ⊆ Rn be convex with o /∈ int(K). Then
there is a hyperplane H isolating o from K.

Proof. Assume that int(K) 6= ∅. Since int(K) is convex (Exercise 3 from the first
worksheet), by the isolation theorem there is a hyperplane H that isolates o from int(K).
But then, since closed half spaces are closed sets, H isolates o from cl(int(K)), and thus,
also from K.

Now, let int(K) = ∅ and let G = aff(K). Then the relative interior of K is nonempty
in G, and hence, there is an affine subspace G′ in G for which dim(G′) = dim(G) − 1,
and which isolates o from K in G. But then, choosing any hyperplane H satisfying
G ∩H = G′, H isolates o from K.
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π(K)

P ∩K

K

L

G

o

Figure 36: The open convex body K ⊆ Rn does not contain o. If P is an arbitrary plane containing o,
then there is a line L ⊆ P throught o and disjoint from P ∩K (n = 2 case). The orthogonal projection
π(K) of K onto H = L⊥ is open and disjoint from π(o) = o therefore, by induction one can find a
hyperplane G in H containing o and disjoint from π(K). Then π−1(G) is a hyperplane in Rn that is
disjoint from K and contains o.

Theorem 6.10. If K,L ⊂ Rn are disjoint, convex sets, then K and L can be separated
by a hyperplane.

Proof. Let M = K−L = K+ (−1)L. Since K and L are disjoint, o /∈ K−L. But then,
by the previous theorem, there is a hyperplane H which isolates o from M (Figure 3838).
In other words, there is a linear functional f : Rn → R satisfying f(x) ≥ 0 for any
x ∈M . But then M = K − L implies

0 ≤ inf {f(x)|x ∈M}
= inf {f(x)− f(y)|x ∈ K, y ∈ L}
= inf {f(x)|x ∈ K} − sup {f(y)|y ∈ L} .

Let α = inf {f(x)|x ∈ K}. Then, according to the conditions, for any x ∈ K we have
f(x) ≥ α, and for any x ∈ L we have f(x) ≤ α, and thus, the hyperplane {x|f(x) = α}
separates K and L.

Corollary 6.11. If K,L ⊂ Rn are disjoint, open, convex sets, then K and L can be
strictly separated by a hyperplane.
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r ε
p q

K

Figure 37: If q ∈ int(K) then K contains a ball of radius ε > 0 centered at q. For all p ∈ K and r ∈ (p, q)

the ball of radius
‖r−p‖
‖q−p‖ ε centered at r is a subset of K.

K

L

K − L

H

o

Figure 38: The hyperplane H isolates o from K−L, i.e., there is a linear functional f such that f(x) ≥ 0
for all x ∈ K − L. Setting α = inf {f(x)|x ∈ K}, the translated hyperplane {x|f(x) = α} separates K
and L.

Problem 6.12. Give an example of convex sets K,L ⊂ Rn whose interiors are disjoint,
but which cannot be separated by a hyperplane.

Theorem 6.13. Let K,L ⊂ Rn be convex sets with int(K) 6= ∅ and int(K) ∩ L = ∅.
Then K and L can be separated by a hyperplane.

Proof. We have seen that if K is convex, then int(K) is convex (Exercise 3 on the first
worksheet). But then by Theorem 6.106.10, the sets int(K) and L can be separated by a
hyperplane. Since we learned that if int(K) 6= ∅, then K ⊂ cl(int(K)), and a hyperplane
separating int(K) and L separates also cl(int(K)) and L, the assertion follows.

Theorem 6.14. If K,L ⊂ Rn are disjoint, convex sets, K is compact and L is closed,
then K and L can be strictly separated by a hyperplane.

Proof. We apply the idea of Theorem 2.52.5. Let x ∈ K and y ∈ L be arbitrarily chosen
points, and let r = ‖y − x‖. Let L0 be the set of the points of L whose distance from a
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point of K is at most r; in other words, let L0 = L∩ (K + rBn), where Bn is the closed
unit ball centered at o (Figure 3939). Then the distance between any points of L \ L0

and K is greater than r, yielding that dist(K,L) = dist(K,L0), where dist(A,B) =
inf {‖a− b‖|a ∈ A, b ∈ B}. But both K and L0 are compact sets, and hence, there are
points x ∈ K and y ∈ L for which dist(x, y) is minimal. Let H be the hyperplane
bisecting the segment [x, y]. Then H strictly separates K and L, as otherwise there are
points x′ ∈ K and y′ ∈ L for which ‖x′ − y′‖ < ‖x− y‖.

x
yK

L

K + rBn

H

Figure 39: Choosing a sufficiently large r, the set L0 = L ∩ (K + rBn) is nonempty and has the same
distance to K as L. As K and L0 are compact, there exist points x ∈ K and y ∈ L0 having minimal
distance. The hyperplane H bisecting [x, y] strictly separates K and L.

7 Faces of convex sets, extremal and exposed points, the
Krein–Milman theorem

We have already seen (Corollary 2.62.6) that for every boundary point of a convex set there
is a hyperplane through the point such that the set is contained in one of the two closed
half spaces bounded by the hyperplane. This is the motivation behind the following
definitions.

Definition 7.1. Let K ⊆ Rn be a convex set. If H is a closed half space satisfying
K ⊆ H and whose boundary intersects the boundary of K, we say that H is a supporting
half space of K, and the boundary of H is a supporting hyperplane of K (Figure 4040).

Definition 7.2. Let K ⊆ Rn be a closed, convex set and let H be a supporting hyper-
plane of K. Then the set H ∩K is called a proper face of K (Figure 4141). The empty set
is called a not proper face of K. The 0-dimensional faces (consisting of only one point)
are called the exposed points of K, and their set is denoted by ex(K) (Figure 4242).

Our first observation implies the next remark in a natural way.
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H

K

Figure 40: A supporting half space H of K and various supporting hyperplanes (blue).

K

Figure 41: Proper faces of K include the marked points and closed line segments.

Remark 7.3. If K ⊆ Rn is closed and convex, and p ∈ Rn is a boundary point of K,
then K has a proper face F such that p ∈ F .

Problem 7.4. Construct closed, convex sets which have no exposed points.

Proposition 7.5. If F is a proper face of the closed, convex set K ⊆ Rn, then F is
closed and convex.

Proof. Since every proper face F of K can be written as F = K ∩ H, where H is a
supporting hyperplane of K, and a hyperplane is closed and convex, the assertion follows
from the fact that the intersection of closed, convex sets is closed and convex.

Definition 7.6. Let K ⊆ Rn be closed and convex. If p ∈ bdK, and for every q, r ∈ K,
p ∈ [q, r] we have p = q or p = r, then we say that p is an extremal point of K. In
other words, the extremal points of K are the points of K that are not relative interior
points of a segment in K. The set of the extremal points of K is denoted by ext(K)
(Figure 4343).

ex(K)

K

Figure 42: The set of exposed points of K.
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ext(K)

K

Figure 43: The set of extremal points of a closed, convex set K.

Proposition 7.7. If K ⊆ Rn is closed and convex, then ex(K) ⊆ ext(K).

Proof. Let p be an exposed point of K. Then there is a closed half space H bounded by a
hyperplane H0 such that K ⊆ H and K∩H0 = {p}. Assume that q, r ∈ K and p ∈ [q, r].
Using Proposition 3.53.5 with X = {q, r}, we have p ∈ conv(X) ∩H0 = conv(X ∩H0) ⊆
conv(K ∩H0) = {p}. This implies that X ∩H0 is a nonempty subset of {p} therefore
q = p or r = p.

Example 7.8. Let K ⊆ R2 be the union of the unit square [0, 1]2 and the circular region
defined by the inequality (x− 1/2)2 + y2 ≤ 1/4. then o and the point (1, 0) are extremal
points of K, but not exposed points of K. Thus, there are closed, convex sets K for
which ex(K) and ext(K) do not coincide.

K

Our next theorem explores the connection between extremal points and linear func-
tionals.

Theorem 7.9. Let K ⊆ Rn be a closed, convex set, and let f : Rn → R be a linear
functional whose minimal or maximal value on K is α. Let F = K ∩ f−1(α). Then
p ∈ F is an extremal point of F if and only if it is an extremal point of K. In other
words, ext(F ) = ext(K) ∩ f−1(α).

Before proving Theorem 7.97.9, we observe that if p ∈ ex(K), then there is a linear
functional f : Rn → R which attains its minimum on K only at p. Thus, a consequence
of this theorem is the containment ex(K) ⊆ ext(K) for every closed, convex set K.

Proof. Assume that p ∈ ext(K) and p ∈ F . Then, by the definition of extremal point,
for any q, r ∈ K, p ∈ [q, r] we have q = p or r = p. In particular, this holds also for any
q, r ∈ F , implying that p ∈ ext(F ).

Now, let p ∈ ext(F ), and consider points q, r ∈ K with p ∈ [q, r]. If q 6= p and
r 6= p, then for a suitable t ∈ (0, 1), p = tq + (1 − t)r. But from this α = f(p) =
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f(tq + (1− t)r) = tf(q) + (1− t)f(r). As f(q), f(r) ≥ α, there is equality if and only if
f(q) = f(r) = α, i.e., if q, r ∈ F . But as p ∈ ext(F ), this yields q = p or r = p, which is
a contradiction.

Our next theorem shows an important property of extremal points.

Theorem 7.10 (Krein, Milman). Any compact, convex set K ⊂ Rn is the convex hull
of its extremal points.

Proof. We prove the statement by induction on the dimension. Assume that K ⊂ R
is a compact, convex set. Then K is a closed segment, whose extremal points are its
endpoints, and the segment is the convex hull of its endpoints. Thus, the assertion holds
for n = 1.

Assume that the statement is true for any at most (n − 1)-dimensional compact,
convex set, and let K be an n-dimensional compact, convex set. Let p ∈ K be arbitrary,
and let L be an arbitrary line through p. According to our conditions, L∩K is a closed
bounded segment. Let the endpoints of this segment be q and r, where these points may
not be distinct from each other or p. Then, by Remark 7.37.3, there are faces Fq and Fr
of K such that q ∈ Fq and r ∈ Fr (Figure 4444). But as Fq and Fr are convex subsets of
the boundary of K, they have no interior points, and thus, by Lemma 6.86.8, they are at
most (n − 1)-dimensional compact, convex sets. By the induction hypothesis, we have
q ∈ conv ext(Fq) and r ∈ conv ext(Fr). But by the definition of face, there are linear
functionals fq : Rn → R and fr : Rn → R attaining their minima exactly at Fq and Fr,
respectively, and thus, by Theorem 7.97.9, the extremal points of Fq and Fr are extremal
points of K. But then p ∈ [q, r] ⊆ conv(ext(Fq) ∪ ext(Fr)) ⊆ conv(ext(K)).

Fq

Fr

L

p

q

r

K

Figure 44: If p is an arbitrary point of K and L is a line through p, then L ∩ K is a line closed
segment. Its endpoints q and r are contained in faces Fq and Fr of K, which are convex sets of lower
dimension, therefore by the induction hypothesis q ∈ conv(ext(Fq)) and r ∈ conv(ext(Fr)), implying
that p ∈ [q, r] ⊆ conv(ext(K)).

We have seen that the extremal points of a set are not necessarily exposed points.
On the other hand, it is true that they are accumulation points of sequences of exposed
points.

Theorem 7.11 (Straszewicz). For any compact, convex set K ⊂ Rn we have K =
cl(conv(ex(K))); or in other words, K is equal to the closure of convex hull of its exposed
points.
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Proof. Let x ∈ ext(K) and ε > 0 be arbitrary. Let us consider the compact, convex
set Kε = conv(K \ intBε(x)) ⊆ K, where Bε(x) denotes the closed ball of radius ε and
center x. If x ∈ Kε, then by the Carathéodory theoremCarathéodory theorem it is the convex combination of
at most n+ 1 points of (K \ intBε(x)); that is, it is a relative interior point of a segment
in K. But this contradicts the assumption that x ∈ ext(K), and thus, x /∈ Kε.

Note that Kε is a compact, convex set, and thus, it can be strictly separated from x.
In other words, there is a hyperplane H such that one of the closed half spaces bounded
by it intersects K in a subset of Bε(x), and this half space contains x in its interior. Let
L be the half line starting at x, perpendicular to H and intersecting H. For any y ∈ L
let z(y) be a farthest point of K from y. Then z(y) ∈ ex(K) for any y ∈ L (see Problem
sheet 5, Exercise 4). On the other hand, if y is sufficiently far from x, then z(y) ∈ Bε(x).
Thus x ∈ cl(ex(K)), from which ext(K) ⊆ cl(ex(K)) (Figure 4545).

By the containment relation conv(cl(X)) ⊆ cl(conv(X)), satisfied for any setX ⊆ Rn,
and by the Krein–Milman theoremKrein–Milman theorem, we have

K ⊆ conv(ext(K)) ⊆ conv(cl(ex(K))) ⊆ cl(conv(ex(K))) ⊆ K,

that is, K = cl(conv(ex(K))).

Bε(x)

H

L
y

z(y) x

Kε

Figure 45: The set Kε is the convex hull of K (light gray) with an ε-ball around the extremal point x
removed. Since Kε is compact and convex and does not contain x, it can be strictly separated from x
by a hyperplane H. Let y be a point on the half line L starting at x and perpendicular to H. If y is
sufficiently far from x, then the unique point z(y) ∈ K farthest from y is in Bε(x) ∩ ex(K).
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8 Valuations and the Euler characteristic

Let us recall the following concept from our previous studies.

Definition 8.1. Let A ⊂ Rn be a set. The indicator function I[A] of the set is the
function

I[A](x) =

{
1, if x ∈ A,
0, if x /∈ A.

.

We remark that for any A,B ⊂ Rn, we have I[A] · I[B] = I[A ∩B].

Lemma 8.2 (Inclusion-exclusion formula). For any sets A1, A2, . . . , Ak ⊂ Rn,

I[A1 ∪A2 ∪ . . . ∪Ak] = 1− (1− I[A1])(1− I[A2]) . . . (1− I[Ak])

=

k∑
j=1

(−1)j−1
∑

1≤i1<i2<...<ij≤k
I[Ai1 ∩Ai2 ∩ . . . ∩Aij ].

Proof. Let us introduce the notation B̄ = Rn \B for any set B ⊆ Rn. Observe that the
first statement is equivalent to the equality

A1 ∪A2 ∪ . . . ∪Ak = Ā1 ∩ Ā2 ∩ . . . Āk,

which readily follows from the de Morgan identities. The second statement is a conse-
quence of the previous remark.

Definition 8.3. The real vector space generated by the indicator functions I[A] of the
compact, convex sets A ⊂ Rn is called the algebra of compact, convex sets, and is denoted
by K(Rn). The real vector space generated by the indicator functions I[A] of the closed,
convex sets A ⊂ Rn is called the algebra of closed, convex sets, and is denoted by C(Rn).

Remark 8.4. An arbitrary element of K(Rn) can be written as
k∑
i=1

αiI[Ai], where αi ∈ R,

and the sets Ai ⊂ Rn are compact and convex. Observe that if A,B ⊂ Rn are compact,
convex sets, then A ∩ B is also compact and convex, implying that the product of two
elements of K(Rn) is also an element of K(Rn). Thus, the set K(Rn) is indeed an algebra
over R. A similar observation can be made about the algebra C(Rn).

Definition 8.5. A linear map K(Rn)→ R or C(Rn)→ R is called a valuation.

The main goal of this lecture is the proof of the next theorem.

Theorem 8.6. There is a unique valuation χ : C(Rn) → R satisfying χ(I[A]) = 1 for
all nonempty, closed, convex sets A ⊂ Rn.

This valuation is called the Euler characteristic induced by the algebra of closed,
convex sets. Theorem 8.68.6 was first proved by H. Hadwiger.
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Proof. Note that by the linearity of χ, it can be uniquely extended to every element of
C(Rn), implying that χ is unique. We need to show that χ exists. We first define this
valuation on the elements of K(Rn) by induction on the dimension.

Assume that n = 0. Then any function f ∈ K(R0) can be written as f = αI[o] for
some α ∈ R. Thus, χ(f) = α satisfies the conditions of the theorem.

Let n > 0. For any x ∈ Rn, let p(x) denote the last coordinate of x, and for any
t ∈ R, define the hyperplane

Ht = {x ∈ Rn|p(x) = t} .

This hyperplane can be identified with Rn−1, and thus, there is a (unique) valuation χt
on it satisfying the conditions of the theorem. For any f ∈ K(Rn), let ft denote the
restriction of f onto Ht. Then, if f =

∑k
i=1 αiI[Ai], where αi ∈ R and the Ais are

compact, convex sets, then

ft =
k∑
i=1

αiI[Ai ∩Ht],

and hence, by ft ∈ K(Ht), we have

χt(ft) =
∑
i

Ai∩Ht 6=∅

αi.

Consider the limit
lim
ε→0+

χt−ε(ft−ε).

Note that this limit is equal to χt(ft) if and only if for any sufficiently small ε > 0 and
for every value of i, Ai ∩Ht 6= ∅ implies Ai ∩Ht−ε 6= ∅ (Figure 4646).

In general, we have that lim
ε→0+

χt−ε(ft−ε) is equal to the sum of the αis for which,

for any small ε > 0, we have Ai ∩ Ht−ε 6= ∅. That is, the limit is χt(ft) unless t is
the minimum of the orthogonal projection p on a set Ai. Thus, for any function f , the
limit differs from χt(ft) only for finitely many values of t. Based on this, we define the
function χ as

χ(f) =
∑
t∈R

(
χt(ft)− lim

ε→0+
χt−ε(ft−ε)

)
.

Consider the functions f, g ∈ K(Rn) and numbers α, β ∈ R. Since the valuation χt,
and the operation of taking limit, are linear, it follows that χ(αf+βg) = αχ(f)+βχ(g).
Furthermore, if A ⊂ Rn is a nonempty, compact, convex set, then

χt(I[A ∩Ht])− lim
ε→0+

χt−ε(I[A ∩Ht−ε]) =

1, if min
x∈A

p(x) = t,

0, otherwise.

As the minimum is uniquely defined on A, we have χ(I[A]) = 1.
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Now we extend χ to C(Rn). Using the standard notation Bρ(o) = {x ∈ Rn|‖x‖ ≤ ρ},
if f ∈ C(Rn), let

χ(f) = lim
ρ→∞

f · I[Bρ(o)].

Then χ clearly satisfies the requirements.

Ai

Ht2

Ht2−ε

Ht1

Ht1−ε

Figure 46: The sets Ai∩Ht1 and Ai∩Ht2 are nonempty, compact and convex, therefore χt1(I(Ai∩Ht1)) =
χt2(I(Ai∩Ht2)) = 1. For small ε > 0 the set Ai∩Ht1−ε is also nonempty, compact and convex, therefore
χt1−ε(I(Ai∩Ht1−ε)) = 1. On the other hand, Ai∩Ht2−ε = ∅ for ε > 0, therefore χt1−ε(I(Ai∩Ht1−ε)) = 0,
implying that χt(I(Ai ∩Ht)) jumps by one at t2, the minimum of the last coordinate over Ai.

If A ⊂ Rn is a set such that I[A] ∈ C(Rn), then, instead of χ(I[A]), we use the
notation χ(A). We call this quantity the Euler characteristic of A. We remark that
Euler characteristic can be also defined in a more general setting, for the so-called CW
complexes. Nevertheless, the discussion of these complexes is outside the scope of this
course.

Example 8.7. Consider the following shape in the plane (with a light background added
for reference):

A possible way to express its indicator function as a linear combination of indicator
functions of compact convex sets is

= + + + − − − −

+ + − − − ,
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and from this we infer

χ


 = 1 + 1 + 1 + 1− 1− 1− 1− 1

+ 1 + 1− 1− 1− 1

= −1.

In the proof of the previous theorem, we proved also the following lemma.

Lemma 8.8. Let A ⊂ Rn be a set such that I[A] ∈ K(Rn). Let t ∈ R, and let Ht be the
set of the points x = (x1, . . . , xn) with xn = t. Then I[A ∩Ht] ∈ K(Rn), and

χ(A) =
∑
t∈R

(
χ(A ∩Ht)− lim

ε→0+
χ(A ∩Ht−ε)

)
.

The last lemma is the consequence of Lemma 8.28.2 and Theorem 8.68.6.

Lemma 8.9. Let A1, A2, . . . , Ak ⊂ Rn be sets such that I[Ai] ∈ K(Rn) for any i =
1, 2, . . . , k. Then

χ(A1 ∪A2 ∪ . . . ∪Ak) =
k∑
j=1

(−1)j−1
∑

1≤i1<i2<...<ij≤k
χ(Ai1 ∩Ai2 ∩ . . . ∩Aij ).

9 Convex polytopes and polyhedral sets

Our next topic is the theory of convex polytopes. Our main concept is as follows.

Definition 9.1. The convex hull of finitely many points in Rn is called a convex poly-
tope, or shortly, polytope (Figure 4747). If P ⊂ Rn is a convex polytope, then the set
{x1, x2, . . . , xk} ⊂ Rn is a minimal representation of P , if

(i) P = conv{x1, x2, . . . , xk}, and

(ii) for any index i, we have xi /∈ conv{x1, . . . , xi−1, xi+1, . . . , xk}.

Let us observe that every convex polytope has a minimal representation, which can
be obtained by removing redundant points one by one from any represention. It is worth
noting that the exposed points (that is, 0-dimensional faces) of a convex polytope are
usually called vertices, and the (n− 1)-dimensional faces of a convex polytope are called
facets.

Theorem 9.2. Let M = {x1, . . . , xk} ⊂ Rn be a minimal representation of the convex
polytope P . Then the following are equivalent:

(i) x ∈M ,
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x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

P

Figure 47: The set P = conv{x1, . . . , x11} is a convex polytope in R2. Its minimal representation is the set
{x1, . . . , x6}. The exposed points (vertices) are x1, . . . , x6, and its facets are [x1, x2], . . . , [x5, x6], [x6, x1].

(ii) x ∈ ex(P ),

(iii) x ∈ ext(P ).

Proof. (i)(i) =⇒ (ii)(ii): Assume that x ∈M . Then x /∈ conv(M \ {x}). Since conv(M \ {x})
is compact and convex, there is a hyperplane H that strictly separates it from x. Let H0

be the hyperplane parallel to H and containing x (see Figure 4848). Then H0 ∩M = {x}
and H0 is a supporting hyperplane of P = conv(M). By Proposition 3.53.5, then H0∩P =
H0 ∩ conv(M) = conv(H0 ∩M) = {x}, and hence, x is a vertex of P .

(ii)(ii) =⇒ (iii)(iii): By Proposition 7.77.7, for any closed, convex set K we have ex(K) ⊆
ext(K). As M is compact, so is its convex hull by Theorem 3.43.4.

(iii)(iii) =⇒ (i)(i): Let x ∈ ext(P ). Now, if x ∈ conv(M \ {x}) was true, then x could be
written as a convex combination of points from M \ {x}. Choosing a minimal number
of such points one can show that then x could be written as a relative interior point of
a segment in P , which would contradict the condition that x ∈ ext(P ).

Corollary 9.3. Every convex polytope has a unique minimal representation.

Remark 9.4. By Proposition 3.53.5, if H is a supporting hyperplane of the convex set
conv(X), then H ∩ conv(X) = conv(H ∩ X). From this it follows that every face of a
convex polytope is a convex polytope, and also that every convex polytope has only finitely
many faces.

The next two statements hold for the faces of every compact, convex sets.
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x1 = x

x2

x3

x4

x5

H

H0

conv(M \ {x})

Figure 48: Since M = {x1, . . . , xk} is a minimal representation of the polytope P , for x ∈ M we have
x /∈ conv(M \ {x}), therefore a hyperplane H strictly separates {x} and conv(M \ {x}). If H0 is the
translate of H that contains x, then H0 ∩ P = {x}.

Proposition 9.5. If K ⊂ Rn is a nonempty, compact, convex set, and F1, . . . , Fm are
faces of K, then F =

⋂m
i=1 Fi is a face of K.

Proof. If F = ∅, then F is a face of K, and thus, we may assume that F 6= ∅, which
implies that for every i, Fi is a proper face of K. Without loss of generality, we may
assume that o ∈ F . Since Fi is a proper face of K, there is a linear functional fi : Rn → R
satisfying fi(x) ≥ 0 for all x ∈ K, and for which f(x) = 0 for some x ∈ K if and only
if x ∈ Fi. Now, let f =

∑m
i=1 fi. This function f is a linear functional, and if x ∈ K,

then f(x) ≥ 0. Assume that x ∈ K and f(x) = 0. From this,
∑m

i=1 fi(x) = 0, but since
fi(x) ≥ 0 for any value of i, this is satisfied if and only if fi(x) = 0 for all values of i, or
in other words, if x ∈ F . Thus, F is a face of K.

Proposition 9.6. Let S2 ⊆ S1 ⊂ Rn be compact, convex sets. If F is a face of S1, then
F ∩ S2 is a face of S2.

Proof. If F ∩ S2 = ∅, then it is clearly a face of S2. Assume that F ∩ S2 6= ∅, which
implies that F is a proper face of S1. Let H be a supporting hyperplane of S1 satisfying
H ∩ S1 = F . Then H also supports S2, and H ∩ S2 = (H ∩ S1)∩ S2 = F ∩ S2, implying
that F ∩ S2 is a face of S2.

Our next proposition, which, in some sense, is the converse of the previous one, holds
only for convex polytopes.

Proposition 9.7. Let F1 be a proper face of a convex polytope P , and let F2 be a face
of F1. Then F2 is a face of P .
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Proof. If F2 = ∅, then the statement holds, and hence, we may assume that F2 is a
proper face of F1. According to our conditions, P has a supporting hyperplane H in
Rn satisfying P ∩H = F1, and if F2 is a proper face of F1, then there is a ‘supporting
hyperplane’ G of F2 in H satisfying G ∩ F1 = F2. Observe that dimG = n − 2. As P
is a convex polytope, only finitely many vertices of P are not elements of H, and thus,
H can be rotated around G with a sufficiently small angle in a suitable direction such
that the hyperplane H ′ obtained by this rotation is a supporting hyperplane of P , and,
from amongst the vertices of P , it contains only those in F2 (Figure 4949). But from this,
it follows that H ′ ∩ P = F2, yielding that F2 is a face of P .

H ′

H G

F2

F1

Figure 49: Since F1 is a face of the convex polytope P , there is a supporting hyperplane H ⊆ Rn such
that H ∩P = F1. Similarly, there is an affine subspace G ⊆ H of dimension n−2 such that G∩F1 = F2.
Rotating H by small angle results in a hyperplane H ′ satisfying H ∩ P = F2.

Problem 9.8. Construct a compact, convex set K ⊆ Rn with the property that it has
a proper face F1, and F1 has a proper face F2 such that F2 is not a face of K.

We have seen that every compact, convex set can be obtained as the intersection of
closed half spaces. Now we show that a convex polytope is the intersection of finitely
many closed half spaces (namely those defined by its facets).

Definition 9.9. The intersection of finitely many closed half spaces is called a polyhedral
set (Figure 5050).

Theorem 9.10. Every convex polytope is a bounded polyhedral set.

Proof. Let P ⊂ Rn be a convex polytope. As P is compact, it is sufficient to prove
that it is a polyhedral set. Without loss of generality, assume that dimP = n, as every
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Figure 50: A polyhedral set is the intersection of finitely many closed half spaces.

hyperplane is obtained as the intersection of the two closed half spaces it generates, and
every affine subspace is obtained as the intersection of finitely many hyperplanes.

Let M = {x1, . . . , xk} be a minimal representation of P . Let the facets of P be
F1, . . . , Fm, and denote by Hi and H+

i the supporting hyperplane and the closed sup-
porting half space defined by Fi, respectively. Then for any index i, we have P ∩Hi = Fi
and P ⊂ H+

i . We show that P =
⋂m
i=1H

+
i .

Cearly, P ⊆
⋂m
i=1H

+
i , and thus, by contradiction, we suppose that there is a point

x ∈
(⋂m

i=1H
+
i

)
\ P . Now, let D =

⋃
aff({x} ∪ C), where C runs over the family of the

subsets of M of cardinality at most (n− 1). Then D is the union of finitely many affine
subspaces of dimension at most (n−1), and thus, we can choose a point y ∈ int(P ) with
y /∈ D. But then, by x /∈ P , the segment [x, y] intersects the boundary of P , that is,
there is a point z ∈ (x, y) with z ∈ bd(P ). We will show that z lies on a facet of P , but
it does not lie on any lower dimensional face of P .

Assume that z ∈ F for some j-dimensional face of P , where 0 ≤ j ≤ n− 2. Then, by
Carathéodory’s theoremCarathéodory’s theorem, z is contained in the convex hull of at most (n−1) points of M ,
implying aff{x, z} ∈ D, which contradicts the assumption that y /∈ D. By Corollary 2.62.6,
any boundary point of a compact, convex set is a point of a supporting hyperplane of
the set, and thus, a point of a proper face of the set. Thus, by exclusion, z is a point
of a facet Fi of P . But from this, by y ∈ intP ⊂ intH+

i , we obtain x /∈ Hi, which
contradicts our choice of y. This yields that P =

⋂m
i=1H

+
i .

Corollary 9.11. The boundary of every n-dimensional convex polytope P ⊂ Rn is the
union of the facets of P .

Theorem 9.12. Every bounded polyhedral set is a convex polytope.

Proof. Every bounded polyhedral set P ⊂ Rn is a compact, convex set. Thus, by the
Krein–Milman theoremKrein–Milman theorem, it is sufficient to show that P has finitely many extremal points.
We prove this by induction on the dimension n. If n = 1, then every compact, convex
set (in particular, P ) is a closed segment with two extremal points, the endpoints of
the segment. Thus, for n = 1 the statement holds. Now, let P be an n-dimensional
polyhedral set, and let H1, . . . ,Hk be the hyperplanes bounding the closed half spaces
defining P .
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Let x ∈ ext(P ). If x ∈ P and x /∈ Hi for any i, then, by the continuity of linear
functionals, x ∈ int(P ), implying x /∈ ext(P ). Thus, we can assume that x ∈ Hi for some
value of i. By Theorem 7.97.9, for any closed, convex set K and any supporting hyperplane
H of K, we have ext(K)∩H = ext(K ∩H). This yields that ext(Hi∩P ) = ext(P )∩Hi.
But, by the induction hypothesis, |ext(Hi∩P )| <∞, implying |ext(P )| ≤

∑m
i=1|ext(Hi∩

P )| <∞.

10 Face structures of polytopes and Euler characteristic

Let us recall the definition of algebraic lattice.

Definition 10.1. Let (A,≤) be a partially ordered set. If, for any a1, a2, . . . , ak ∈ A
there is a c ∈ A such that c ≤ ai for every value of i, and if d ∈ A, d ≤ ai for every
i implies that d ≤ c, then we say that c is the infimum of a1, . . . , ak. One can define
the supremum of a1, . . . , ak similarly. If for any a, b ∈ A, a and b has an infimum and a
supremum, we say that (A,≤) is an (algebraic) lattice.

Definition 10.2. Assume that (A ≤) is a lattice with a minimal element, denoted by
0, that is, assume that there is an element 0 ∈ A such that 0 ≤ a for all a ∈ A. We say
that a ∈ A, a 6= 0 is an atom, if b ∈ A, and b ≤ a implies b = a or b = 0. We say that
(A,≤) is atomic, if for every b ∈ A, b 6= 0 there is an atom a ∈ A satisfying a ≤ b. We
say that (A,≤) is atomistic, if every element of A is the supremum of some atoms in A.

Example 10.3. Let n be a positive integer. The set of divisors of n, partially ordered by
divisibility, is a lattice. Its minimal element is 1, and its atoms are the prime divisors
of n. It is atomic since every number other than 1 has a prime divisor. The lattice is
atomistic iff n is square-free (see Figures 5151 and 5252).

12

64

32

1

Figure 51: The Hasse diagram of the lattice of divisors of 12 = 22 · 3. The infimum of 4 and 6 is 2
(greatest common divisor), while the supremum of 2, 3 and 4 is 12 (least common multiple). This lattice
is atomic but not atomistic, since 4 is not the supremum of any set of atoms.

Theorem 10.4. Let P ⊂ Rn be an n-dimensional convex polytope, and let F the family
consisting of the faces of P (including the empty set), and also P . Then F is a lattice
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30

15 10 6

5 3 2

1

Figure 52: The Hasse diagram of the lattice of divisors of 30 = 2 · 3 · 5. The minimal element is 1, the
atoms are 2, 3 and 5 (prime factors), and every divisor is the least common multiple of some of the
atoms, i.e., this lattice is atomistic.

with respect to the partial order defined by the containment relation. This lattice is
atomic and atomistic, and its atoms are the vertices of P .

Proof. Let F ∈ F . Then the infimum and the supremum of ∅ and F is ∅ and F ,
respectively, and the infimum and the supremum of P and F are F and P , respectively.
Now, let F1 and F2 be proper faces of P . We have seen that F = F1 ∩F2 is a face of P .
Clearly, for any F ′ ∈ F with F ′ ⊆ F1 and F ′ ⊆ F2, we have F ′ ⊆ F , and thus, F is the
infimum of F1 and F2.

We show that F1 and F2 has a supremum. Indeed, if there is no proper face of P
that contains both F1 and F2, then, clearly, P is the supremum of F1 and F2. If there
is a proper face containing F1 ∪ F2, then let F denote the intersection of all the faces
satisfying this property. As F is a face of P , we have that F is the supremum of F1 and
F2.

We have shown that F is a lattice. The minimal element of this lattice is ∅, and
the singleton faces, i.e. the vertices, are its atoms. By the theorem of Straszewicztheorem of Straszewicz,
every convex polytope has vertices. Furthermore, as the proper faces of P are convex
polytopes, every face has vertices, yielding that the atoms are exactly the vertices of P ,
and F is atomic. On the other hand, every face is the supremum of the verties contained
in the face, and thus, F is atomistic.

Definition 10.5. The lattice assigned to the n-dimensional convex polytope P in The-
orem 10.410.4 is called the face lattice of P .

We continue with the properties of the Euler characteristics of convex polytopes.

Lemma 10.6. Let P ⊂ Rn be an n-dimensional (convex) polytope. Then

χ(bdP ) = 1 + (−1)n−1, and χ(intP ) = (−1)n.

Proof. By Corollary 9.119.11 bdP is the union of the facets of P , and thus, by Lemma 8.28.2
I[bdP ] ∈ K(Rn) and thus, χ(bdP ) exists. We prove the first equality by induction.
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Figure 53: The Hasse diagram of the face lattice of a square pyramid.

If n = 1, then P is a closed segment, for which the assertion readily follows. Assume
that P is an n-dimensional polytope, and also that the statement holds for (n − 1)-
dimensional polytopes. We use the notation of Lemma 8.88.8. By the lemma,

χ(bdP ) =
∑
t∈R

(
χ(Ht ∩ bdP )− lim

ε→0+
χ(Ht−ε ∩ bdP )

)
.

Let tmin = min
x∈P

xn and tmax = max
x∈P

xn, where x = (x1, . . . , xn). Then, for every tmin <

t < tmax, the set P ∩Ht is an (n− 1)-dimensional polytope, and thus, by the induction
hypothesis, χ(Ht ∩ bdP ) = χ(bd(Ht ∩ P )) = 1 + (−1)n−2 (Figure 5454). If t = tmin

or t = tmax, then Ht ∩ bdP is a face of the polytope, and thus, χ(Ht ∩ bdP ) = 1.
Furthermore, if t > tmax or t < tmin, then χ(Ht ∩ bdP ) = 0. Summing up:

χ(bdP ) = 1− (1 + (−1)n−2) + 1 = 1 + (−1)n−1.

Finally, by I[intP ] = I[P ]− I[bdP ], we have

χ(intP ) = 1− (1 + (−1)n−1) = (−1)n.

Definition 10.7. Let P ⊂ Rn be an n-dimensional convex polytope. If i = 0, 1, . . . , n−1,
let fi(P ) denote the number of the i-dimensional faces of P . Then the vector f(P ) =
(f0(P ), f1(P ), . . . , fn−1(P ), 1) ∈ Rn+1 is called the f -vector of P .
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P

Htmin

Ht

Htmax

Figure 54: χ(Htmin ∩ bdP ) = χ(Htmax ∩ bdP ) = 1, since both intersections are convex polytopes. For
tmin < t < tmax, the intersection Ht ∩ bdP is the relative boundary of Ht ∩ P , and Ht ∩ P is a convex
polytope of dimension n− 1. By the induction hypothesis, χ(Ht ∩ bdP ) = 1 + (−1)n−2.

We remark that the last coordinate is the consequence of the convention, often ap-
pearing in the literature, which regards P as an n-dimensional face of itself.

Example 10.8.

(i) The f -vector of a convex n-gon is (n, n, 1).

(ii) The f -vector of the cube is (8, 12, 6, 1).

(iii) The f -vector of an n-dimensional simplex is (n+ 1,
(
n+1
2

)
,
(
n+1
3

)
, . . . ,

(
n+1
n+1

)
).

To prove our next theorem we need a lemma, with respect to which we should
clarify that the relative interiors of singletons (i.e. 0-dimensional affine subspaces) are
themselves.

Lemma 10.9. Let P ⊂ Rn be an n-dimensional polytope and let x ∈ bd(P ) be arbitrary.
Then there is a unique face of P containing x in its relative interior.

Proof. Let F be the intersection of the faces containing x. Since P has only finitely
many faces, and the intersection of finitely many faces is a face, it follows that F is a
face of P . As x ∈ F , therefore F is a proper face. We show that x ∈ relint(F ), and that
F is the only face of P with this property.

Assume that x ∈ relbd(F ). Since F is a convex polytope, F has a face F ′ containing
x. But then Proposition 9.79.7 implies that F ′ is a proper face of P , and thus we have
found a face F ′ containing x with F 6⊆ F ′, which contradicts the definition of F . Thus,
x ∈ relint(F ).

For contradiction, let F ′ 6= F be a proper face of P satisfying x ∈ relint(F ′). Then,
by the definition of F , we have F ⊂ F ′. On the other hand, since F is a face of P , there is
a hyperplane H supporting P with H∩P = F . This hyperplane supports also the convex
polytope F ′ in F , implying that F is a proper face of F ′. Thus, x ∈ F ⊂ relbd(F ′); a
contradiction.
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F
x

Figure 55: The point x lies in the boundary of the convex polytope P , and F is the intersection of the
faces containing x. It follows that x is in the relative interior of F and no other face contains x in its
relative interior.

Theorem 10.10 (Euler). Let P ⊂ Rn be an n-dimensional convex polytope. Then

n−1∑
i=0

(−1)ifi(P ) = 1 + (−1)n−1.

Proof. Lemma 10.910.9 implies that I[P ] =
∑

F I[relintF ], where the summation is taken
over all nonempty faces of P , and P itself. Applying the valuation χ to both sides of
this equation, the statement follows from Lemma 10.610.6.

11 Polarity

From now on, we denote by Br(x) the closed ball of radius r and center x. The main
concept of this lecture is the following.

Definition 11.1. Let A ⊆ Rn be a nonempty set. Then the polar of A is the set

A∗ = {y ∈ Rn|〈x, y〉 ≤ 1 for every x ∈ A} .

Example 11.2.

(i) {o}∗ = Rn,

(ii) If x 6= o, then {x}∗ is the closed half space, containing o, whose boundary is
perpendicular to x and its distance from o is 1

‖x‖ .

(iii) For any r > 0, Br(o)
∗ = B 1

r
(o). This statement readily follows from the previ-

ous example, since the intersection of the closed half spaces, containing o, whose
distance from o is 1

r coincides with B 1
r
(o).
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Figure 56: Sets and their polars.

The next theorem summarizes some simple properties of polarity.

Theorem 11.3.

(i) For any set A ⊆ Rn, A 6= ∅, we have A∗ =
⋂
a∈A{a}∗.

(ii) For any nonempty sets Ai ⊆ Rn, i ∈ I, we have
(⋃

i∈I Ai
)∗

=
⋂
i∈I A

∗
i .

(iii) For any A ⊆ Rn, A 6= ∅, the set A∗ is a closed, convex set containing o.

(iv) If A1 ⊆ A2 ⊆ Rn are nonempty, then A∗2 ⊆ A∗1.

(v) If A ⊆ Rn, A 6= ∅ and λ > 0, then (λA)∗ = 1
λA
∗.

Proof. Part (i)(i) of the theorem is a direct consequence of the definition. Part (ii)(ii) can be
shown similarly, since(⋃

i∈I
Ai

)∗
=

⋂
x∈

⋃
i∈I Ai

{x}∗ =
⋂
i∈I

 ⋂
x∈Ai

{x}∗
 =

⋂
i∈I

A∗i .

To prove Part (iii)(iii) consider the fact that for any A ⊆ Rn, A 6= ∅, the set A∗ is either
Rn (which is a closed, convex set containing o), or the intersection of closed half spaces
containing o. Since closed half spaces are convex sets, and the intersection of closed,
convex sets containing o is a closed, convex set containing o, Part (iii)(iii) follows. Part (iv)(iv)
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is a consequence of Part (i)(i). Finally, if A ⊆ Rn, A 6= ∅ and λ > 0, then

(λA)∗ = {y ∈ Rn|〈λx, y〉 ≤ 1 for every x ∈ A}
= {y ∈ Rn|〈x, λy〉 ≤ 1 for every x ∈ A}

=

{
1

λ
z ∈ Rn

∣∣∣∣〈x, z〉 ≤ 1 for every x ∈ A
}

=
1

λ
{z ∈ Rn|〈x, z〉 ≤ 1 for every x ∈ A} =

1

λ
A∗.

This proves Part (v)(v).

The next two statements investigate the polars of special classes of sets.

Proposition 11.4. Let K ⊂ Rn be a compact, convex set containing o in its interior.
Then K∗ is a compact, convex set containing o in its interior.

Proof. By Part (iii)(iii) of Theorem 11.311.3, K∗ is a closed, convex set containing o. We show
that K∗ is bounded and it contains o in its interior. According to our conditions, there
are constants 0 < r < R such that Br(o) ⊆ K ⊆ BR(o). From this, by Part (iv)(iv) of
Theorem 11.311.3 it follows that

B 1
R

(o) = BR(o)∗ ⊆ K∗ ⊆ Br(o)∗ = B 1
r
(o),

which yields the statement (Figure 5757).

K
Br

BR
o

K∗

B 1
R

B 1
r

o

Figure 57: If a closed set K contains o in its interior, then K∗ is compact; if K is compact, then
o ∈ int(K∗).

Proposition 11.5. Let K ⊆ Rn, K 6= ∅. Then (K∗)∗ = K holds if and only if K is
closed, convex, and o ∈ K.

49



Proof. If (K∗)∗ = K, then by Part (iii)(iii) of Theorem 11.311.3, K is closed, convex and o ∈ K.
We assume that K is closed, convex and o ∈ K, and show that (K∗)∗ = K. By the
definition of polar, for every x ∈ K and y ∈ K∗, we have 〈x, y〉 ≤ 1, and thus, K ⊆ (K∗)∗.
Now, let x /∈ K be arbitrary. Since K is closed and convex, by Theorem 6.146.14 there is
a hyperplane H that strictly separates x and K (Figure 5858). Let H+ denote the closed
half space bounded by H and containing o ∈ K. By the example in the beginning of the
lecture, the half space H+ is the polar of the set {y}, where the distance of H from o is
1
‖y‖ , and y is an outer normal of H+. But then x /∈ {y}∗ yields 〈x, y〉 > 1, and K ⊂ {y}∗

yields 〈z, y〉 ≤ 1 for every z ∈ K. Thus, in this case y ∈ K∗, implying x /∈ (K∗)∗. This
yields (K∗)∗ ⊆ K, which implies the assertion.

x

H

y

1
‖y‖

o

H+

K

Figure 58: Since x ∈ K and K is closed and convex, there exists a hyperplane H that strictly separates
x and K. The outer normal y of the closed half space H+ bounded by H and containing o ∈ K is chosen
such that dist(o,H) = 1

‖y‖ . It follows that y ∈ K∗ and therefore (K∗)∗ ⊆ {y}∗ = H+ does not contain
x.

The main result of this lecture is as follows.

Theorem 11.6. Let K ⊂ Rn be a compact, convex set containing o in its interior. To
any proper face F of K assign the set

F ◦ = {y ∈ K∗|〈x, y〉 = 1 for every x ∈ F} .

Then F ◦ is a proper face of K∗, and the map F 7→ F ◦ is a bijection between the proper
faces of K and K∗ that reverses containment relation (Figure 5959).

Proof. Let H = {y ∈ Rn|〈v0, y〉 = 1} be an arbitrary supporting hyperplane of K satis-
fying F = H ∩ K. Since 〈v0, y〉 ≤ 1 for every y ∈ K and 〈v0, y〉 = 1 for every y ∈ F ,
we have v0 ∈ F ◦. Thus, F ◦ 6= ∅. Now, let x0 ∈ relint(F ) and H ′ = {y ∈ Rn|〈y, x0〉 = 1}
(Figure 6060). By the definition of polar set and v0 ∈ H ′, we have that H ′ is a supporting
hyperplane of K∗, implying that F ′ = K∗ ∩ H ′ is a proper face of K∗. We show that
F ′ = F ◦.
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Figure 59: The map F 7→ F ◦ is a bijection between the faces of K and K∗.

By the definition of F ◦, F ◦ ⊂ H ′ holds, and thus, F ◦ ⊆ F ′. Now, let y0 ∈ K∗ \ F ◦.
Then, there is some z ∈ F such that 〈z, y0〉 < 1. As x0 ∈ relint(F ), there is a segment
[z, w] ⊆ F such that x0 ∈ [z, w] and x0 6= w. Then x0 can be written in the form
x0 = tz + (1− t)w for some t ∈ (0, 1]. But w ∈ F and y0 ∈ K∗ imply 〈w, y0〉 ≤ 1, from
which

〈x0, y0〉 = t〈z, y0〉+ (1− t)〈w, y0〉 < 1,

that is, y0 /∈ F ′. Thus, we have shown that F ◦ = F ′ yielding, in particular, that F 7→ F ◦

is a face of K∗.
Now we prove that for any proper face F , we have (F ◦)◦ = F , which will imply that

the map F 7→ F ◦ is injective. But since (K∗)∗ = K; that is, applying this property for
K∗ we obtain that the map is bijective. By definition,

(F ◦)◦ = {y ∈ (K∗)∗ = K|〈x, y〉 = 1 for every x ∈ F ◦} .

Thus, F ⊆ (F ◦)◦. Let us consider the supporting hyperplane H = {y ∈ Rn|〈v0, y〉 = 1}
mentioned in the beginning of the proof. For this hyperplane H ∩ K = F is satisfied.
During the proof we have shown that v0 ∈ F ◦. Hence, if y ∈ (F ◦)◦, then 〈y, v0〉 = 1, but
by the condition H ∩K = F we have y ∈ F ; that is, (F ◦)◦ ⊆ F .

We need that the map F 7→ F ◦ reverses the containment relation. But this property
is a straightforward consequence of the definition of F ◦.

Definition 11.7. Let P,Q ⊂ Rn be n-dimensional convex polytopes. We say that Q is
a dual of P , if there is a bijection between the proper faces of Q and P that reverses
containment.

Example 11.8.

(i) Convex polygons are their own duals.
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Figure 60: Let F be a face ofK andH a supporting hyperplane with outer normal v0 such that F = H∩K
and dist(o,H) = 1/ ‖v0‖. If x0 ∈ relint(F ), then H ′ = {y ∈ Rn|〈y, x0〉 = 1} is a supporting hyperplane
of K∗ containing F ◦, which in turn contains v0, therefore F ◦ ⊆ F ′ = H ′ ∩K∗. If y0 ∈ K∗ \ F ◦, then
〈z, y0〉 < 1 for some z ∈ F . Writing x0 as a convex combination of z and w 6= x0, w ∈ F , we conclude
y0 /∈ F ′, therefore F ′ = F ◦.

(ii) The octahedron is a dual of the cube.

(iii) The hexagonal antiprism is a dual of the hexagonal trapezohedron.

Problem 11.9. Find dual pairs of polytopes P,Q.

We remark that extending the above map to ∅ and the polytope itself, the duality
of P and Q corresponds to the fact that the face lattices of P and Q are duals (cf.
Definition 10.510.5).

Proposition 11.10. Let P ⊆ Rn be an arbitrary convex polytope. Then P has a dual
polytope.
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Proof. Since translation and the dimension of the ambient space do not influence the
existence of a dual polytope, we may assume that P is n-dimensional, and it contains o
in its interior. But then P ∗ is a dual of P .

The following statement, which we present without proof, is often used in convex
geometry. Before reading it, it is worth recalling that every compact set is Lebesgue
measurable, and hence, it has a volume.

Proposition 11.11. Let K be a compact, convex set containing o in its interior, and
let L : Rn → Rn be a nondegenerate linear transformation. Then V (L(K))V (L(K)∗) is
independent of the choice of L, where the symbol V (·) denotes the n-dimensional volume.

Definition 11.12. If K ⊆ Rn is a compact, convex set containing o in its interior, then
the quantity V (K)V (K∗) is called the volume product or Mahler volume of K.

Theorem 11.13 (Blaschke–Santaló). For any compact, convex set K with K = −K
and o ∈ intK, we have

V (K)V (K∗) ≤ κ2n =
πn

Γ
(
n
2 + 1

)2 ,
where κn denotes the volume of the n-dimensional unit ball.

The next conjecture is one of the most fundamental conjectures in convex geometry.

Conjecture 11.14 (Mahler). For any compact, convex set K with K = −K and o ∈
intK, we have

V (K)V (K∗) ≥ V (C)V (C∗) =
4n

n!
,

where C is a cube centered at o.

It is known that there is an absolute constant c > 0 such that V (K)V (K∗) ≥ cn

n!
holds for any compact, convex set K with K = −K and o ∈ intK.

12 Introduction to Hausdorff distance

Our next topic is Hausdorff distance. Let us recall the concepts of Minkowski sum and
support function (Definitions 1.11.1 and 5.45.4).

If A,B ⊆ Rn are nonempty sets, then their Minkowski sum is

A+B = {a+ b|a ∈ A, b ∈ B} .

We have seen that if A,B are compact, convex sets, then A + B is also compact and
convex. We have defined the support function of a bounded set K as h : Rn → R,
hK(x) = sup {〈x, y〉|y ∈ K}, and we have shown that if o ∈ K, then hK is convex.

In the lecture we denote the family of compact, convex nonempty sets in Rn by Kn.
The main definition discussed in the lecture is the following.
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Definition 12.1. Let K,L ∈ Kn be compact sets. Then the Hausdorff distance of K
and L is (see Figure 6161)

dH(K,L) = inf {r ≥ 0|K ⊆ L+Br(o) and L ⊆ K +Br(o)} .

K

L

r

Figure 61: The Hausdorff distance of K and L is the smallest r such that both K ⊆ L + Br(o) and
L ⊆ K +Br(o).

We remark that the above definition can be extended for bounded sets in general.

Proposition 12.2. For any K,L ∈ Kn, we have

dH(K,L) = sup {|hK(x)− hL(x)||x ∈ Rn, ‖x‖ = 1} .

Proof. By Proposition 5.65.6 we have K ⊆ L + Br(o) iff for all x ∈ Rn we have hK(x) ≤
hL+Br(o)(x). Using Proposition 5.85.8 and that hBr(o)(x) = r ‖x‖, this is equivalent to
hK(x) ≤ hL(x) + r ‖x‖ for all x. By property (ii)(ii) from Theorem 5.75.7, this inequality is
satisfied iff hK(x) ≤ hL(x) + r for all unit vectors x. Similarly, hL(x) ≤ hK+Br(o)(x) iff
hL(x) ≤ hK(x) + r for all unit vectors x. Therefore |hL(x)− hK(x)| ≤ r is satisfied for
all unit vectors x precisely when both K ⊆ L + Br(o) and L ⊆ K + Br(o) hold. Now,
the statement readily follows by rephrasing the containment relations in the definition
of Hausdorff distance.

Proposition 12.3. If K,L,M ∈ Kn, then

(i) dH(K,L) ≥ 0, with equality if and only if K = L.

(ii) dH(K,L) = dH(L,K).

(iii) dH(K,L) + dH(L,M) ≥ dH(K,M).

Proof. The inequality dH(K,L) ≥ 0 and the equality dH(K,K) = 0 follows from the
definition. On the other hand, if dH(K,L) = 0, then K ⊆ L and L ⊆ K, implying
K = L. The definition does not disinguish the order of K and L, and thus, dH(K,L) =
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dH(L,K). Finally, if K ⊆ L + Br1(o) and L ⊆ M + Br2(o), then Br1(o) + Br2(o) =
Br1+r2(o) yields K ⊆ M + Br1+r2(o), and M ⊆ L + Br2(o) and L ⊆ K + Br1(o)
implies similarly that M ⊆ K + Br1+r2(o). From this we obtain the triangle inequality
dH(K,L) + dH(L,M) ≥ dH(K,M).

Corollary 12.4. The family Kn, equipped with Hausdorff distance, is a metric space.

Let us recall that a metric space is called a complete metric space if every Cauchy
sequence in the space is convergent. This property is investigated in the next theorem.

Theorem 12.5. The family Kn, equipped with Hausdorff distance, is a complete metric
space.

Proof. Let Ki ∈ Kn, i = 1, 2, . . . be a Cauchy sequence of nonempty, compact, convex
sets; i.e. assume that for every ε > 0 there is some m0 ∈ Z+ such that if m1,m2 > m0,
then dH(Km1 ,Km2) < ε. We show that then there is some K ∈ Kn such that Km → K
with respect to the topology induced by Hausdorff distance.

For every positive integer i, let Bi = cl(Ki∪Ki+1∪ . . .). By the properties of Cauchy
sequences, Bi is a nonempty, bounded and closed set in Rn, implying that it is compact,
and Bi+1 ⊆ Bi for every i. Let B = ∩∞i=1Bi. Since the intersection of arbitrarily many
closed sets is closed, B is compact. We show that B is not empty. Indeed, if B = ∅, then
the complements of the sets Bi with respect to the compact set B1 form an open cover
of B1. But then we can choose a finite open subcover of B1, i.e. there are finitely many
Bis whose intersection is ∅, from which, as the sets are nested, it follows that Bi = ∅ for
some value of i, which contradicts the definition of Bi. We have obtained that B is a
nonempty, compact set.

Let ε > 0 be arbitrary. We show that there is an index m ∈ Z+ such that for every
i > m, we have Bi ⊆ int(B+Bε(o)). By contradiction, suppose that it is not true. Then
there is a sequence ij of indices such that for every value of j, Bij 6⊆ int(B + Bε(o)).
Let Cij = Bij \ int(B + Bε(o)). By our conditions, the sets Cij are nonempty, nested,
compact sets, which implies, as in the previous paragraph, C = ∩∞i=1Cij is a nonempty,
compact set. But as the sets Bi are nested, C ⊆ Bij for every value of j, implying that
C ⊆ Bi for every value of i. On the other hand, by their constructions, C and B are
disjoint, which is a contradiction. Thus, for a suitable m ∈ Z+, Bi ⊆ int(B +Bε(o)) for
all i > m. But from this it follows that Ki ⊆ B +Bε(o) for all i > m.

Since {Ki} is a Cauchy sequence, there is an index k such that dH(Ki,Kj) < ε if
i, j > k. Thus, if i > k is arbitrary, then

⋃∞
j=iKi ⊆ Ki + Bε(o), implying B ⊆ Bi ⊆

Ki +Bε(o). This yields that if i > max{k,m}, then dH(B,Ki) ≤ ε, and thus, the limit
set of {Ki} is B.

We need to show that B is convex. Let p, q ∈ B be arbitrary, and assume that for
some t ∈ (0, 1), x = tp+ (1− t)q /∈ B. Then, by the compactness of B, there is a value
δ > 0 such that Bδ(x)∩B = ∅. Since the limit set of {Ki} is B, there is an index i such
that Ki ⊆ B + Bδ/2(o) and some points p′, q′ ∈ Ki such that ‖p− p′‖ , ‖q − q′‖ ≤ δ

2 .
Let x′ = tp′ + (1− t)q′ ∈ Ki, which, by the triangle inequality, implies that ‖x− x′‖ ≤
t ‖p− p′‖ + (1 − t) ‖q − q′‖ ≤ δ

2 , and thus, x ∈ Bδ/2(x
′). But from this we obtain
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x ∈ Ki+Bδ/2(o) ⊆ B+Bδ(o), or in other words, Bδ(x)∩B 6= ∅, which is in contradiction
with the choice of δ.

Definition 12.6. Let F be a nonempty family of nonempty sets in Rn. If there is some
r > 0 such that F ⊆ Br(o) for every F ∈ F , then we say that F is uniformly bounded.

The next theorem is a generalization of the Bolzano–Weierstrass theorem for bounded
sequences.

Theorem 12.7 (Blaschke’s selection theorem). Let F ⊆ Kn be a uniformly bounded,
infinite family. Then F contains a sequence converging to an element of Kn.

Proof. We show that F contains a Cauchy sequence. Let C be a cube in Rn that contains
all elements of F , and let the edge length of C be r. Let i be a positive integer, and
dissect C with hyperplanes parallel to its facets into smaller (closed) cubes of edge length
r
2i

. To any element K of F , assign the union of the small cubes that intersect K. We
call this set the ith minimal cover (Figure 6262).

Since there are only finitely many possible first minimal covers, there is a union F1

of small cubes which is the first minimal cover of infinitely many elements of F . Let
F1 ⊂ F be the subset of F whose first minimal cover is F1. As |F1| =∞ and there are
only finitely many possible second minimal covers, there is a union F2 of small cubes
that is the second minimal cover of infinitely many elements of F1. Continuing this
process, we obtained a sequence of nested subfamilies F ⊇ F1 ⊇ F2 ⊇ . . . ⊇ Fi ⊇ . . .
whith the property that every element of Fi has the same ith minimal cover Fi.

Let Ki ∈ Fi, and consider the sequence {Ki}. According to the construction, for
any Ki ∈ Fi, Kj ∈ Fj , i < j, the ith minimal cover of Ki and Kj i coincides. Since the

diameters of the cubes forming an ith minimal cover is r
√
n

2i
, therefore then dH(Ki,Kj) ≤

r
√
n

2i
(Figure 6363). But this implies that {Ki} is a Cauchy sequence, and thus, by the

previous theorem, it is convergent.

r

Figure 62: A compact convex set in the plane and its third minimal cover with respect to a square of
edge length r.

According to the next theorem, the family of convex polytopes is an everywhere
dense subfamily in Kn.
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r

r
√
n

2i

Figure 63: If two sets have the same ith minimal cover, then their Hausdorff distance is at most r
√
n

2i
,

the diameter of an n-dimensional cube of edge length r
2i

.

Theorem 12.8. Let K ∈ Kn be arbitrary. Then there is a sequence of convex polytopes
{Pk} that converges to K with respect to Hausdorff distance.

Proof. Without loss of generality, assume that dim(K) = n. To prove the statement,
it is sufficient to show that for every ε > 0 there is some convex polytope P satisfying
P ⊆ K ⊆ P + Bε(o), since choosing a polytope Pk for every positive integer k with
the property that Pk ⊆ K ⊆ Pk + B1/k(o), the sequence {Pk} satisfies the required
conditions.

Since K is compact, there are points x1, . . . , xm ∈ K such that the open balls
intBε(xi) cover K. Let P = conv{x1, . . . , xm} (Figure 6464). Then, clearly P ⊆ K.
But K ⊆

⋃m
i=1 int(Bε)(xi) = {x1, . . . , xm} + intBε(o) ⊆ P + Bε(o), from which the

assertion follows.

x1x2

x3

x4

x5

x6

x7

P

K

Figure 64: Since K is compact, for every ε > 0 there exist finitely many points x1, . . . , xm ∈ K such that
the union of the ε-balls centered at these points contains K. As K is convex, it follows that the convex
polytope P = conv{x1, . . . , xm} has a Hausdorff distance of at most ε to K.
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