1. An $m \times n$ matrix $A=\left(a_{i j}\right)_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}}$ is called column stochastic if it has nonnegative entries and every column sum is 1 , i.e., $\sum_{i=1}^{m} a_{i j}=1$ for all $j=1, \ldots, n$. Prove that the set of $m \times n$ column stochastic matrices is compact and convex. (5 points)
2. Recall that the kernel of a set $S \subseteq \mathbb{R}^{n}$ is the set of points x with the property that $[x, y] \subseteq S$ holds for any $y \in S$. Find the kernel of the closed set S below, bounded by two perpendicular straight line segments and two circular arcs, where $r \in(0,1)$. (5 points)

3. Prove that the Minkowski sum of an open set and an arbitrary set is open. (5 points)
4. Let $K \subseteq \mathbb{R}^{n}$ be compact and convex, and $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Prove that $h_{A(K)}(x)=h_{K}\left(A^{T}(x)\right)$ for all $x \in \mathbb{R}^{n}$. Use this to find the support function of an ellipse in the plane, centered at the origin, with half axes of length 2 and 1 parallel to the x and y axes, respectively. (Recall that the linear transformation A^{T} is characterised by the equality $\langle x, A y\rangle=\left\langle A^{T} x, y\right\rangle$ for all $x, y \in \mathbb{R}^{n}$.) (5 points)

