1. Let K be the convex hull of $\{(0,0), (1,0), (1,1), (0,1)\}$ and let L the convex hull of $\{(0,0), (1,0), (0,1)\}$. For $\alpha, \beta \ge 0$ find the area of $\alpha K + \beta L$. (5 points)

2. Let $K \subseteq \mathbb{R}^n$ be a nonempty convex set that can be written as the intersection of finitely many closed balls. Prove that every boundary point of K is an exposed point. (5 points)

3. Express the indicator function of the (closed) shape below as a linear combination of indicator functions of compact convex sets. Use this to find its Euler characteristic. (5 points)

4. Suppose that the vectors $x_1, \ldots, x_k \in \mathbb{R}^n$ satisfy $||x_i|| = ||x_j||$ for all $i, j \in \{1, \ldots, k\}$. Show that $M = \{x_1, x_2, \ldots, x_k\}$ is the minimal representation of conv $\{x_1, x_2, \ldots, x_k\}$. (5 points)