1. Let K be the convex hull of $\{(0,0),(1,0),(1,1),(0,1)\}$ and let L the convex hull of $\{(0,0),(1,0),(0,1)\}$. For $\alpha, \beta \geq 0$ find the area of $\alpha K+\beta L$. (5 points)
2 . Let $K \subseteq \mathbb{R}^{n}$ be a nonempty convex set that can be written as the intersection of finitely many closed balls. Prove that every boundary point of K is an exposed point. (5 points)
2. Express the indicator function of the (closed) shape below as a linear combination of indicator functions of compact convex sets. Use this to find its Euler characteristic. (5 points)

3. Suppose that the vectors $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$ satisfy $\left\|x_{i}\right\|=\left\|x_{j}\right\|$ for all $i, j \in\{1, \ldots, k\}$. Show that $M=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is the minimal representation of $\operatorname{conv}\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. (5 points)
