Beosztás:
egyetemi docens
Fokozat:
PhD
Szoba:
H222
Telefon:
463-1761
Email:
vranap@math.bme.hu
Kurzusok
Tantárgy neve | Kurzus kód | Órarendi információ |
---|---|---|
Konvex geometria | BMETE94AM22/EV | |
Matematika A1a - Analízis | BMETE90AX00/CV1 |
Sz 10:15-12:00 (CHA10) |
Matematika G3 | BMETE94BG03/H5 |
P 10:15-12:00 (R501)
|
Oktatás
A Matematika szigorlat G (korábban: Matematika A3 szigorlat) tárggyal kapcsolatos információk: geometria.math.bme.hu/szigorlat
Segédanyagok
Kiemelt publikációk
- Péter Vrana, A family of multipartite entanglement measures
Communications in Mathematical Physics, 402(1):637–664, 2023
arXiv, doi - Matthias Christandl, Péter Vrana, and Jeroen Zuiddam, Universal points in the asymptotic spectrum of tensors
Journal of the American Mathematical Society, 36:31–79, 2023
arXiv, doi - Péter Vrana, Asymptotic continuity of additive entanglement measures
IEEE Transactions on Information Theory, 68(5):3208–3217, 2022
arXiv, doi - Christopher Perry, Péter Vrana, and Albert H Werner, The semiring of dichotomies and asymptotic relative submajorization
IEEE Transactions on Information Theory, 68(1):311–321, 2022
arXiv, doi - Matthias Christandl, Péter Vrana, and Jeroen Zuiddam, Barriers for fast matrix multiplication from irreversibility
Theory of Computing, 17(2):1–32, 2021
arXiv, doi - Péter Vrana, Probabilistic refinement of the asymptotic spectrum of graphs
Combinatorica, 41:873–904, 2021
arXiv, doi - Alonso Botero, Matthias Christandl, and Péter Vrana, Large deviation principle for moment map estimation
Electronic Journal of Probability, 26:1–23, 2021
arXiv, doi - Péter Vrana and Matthias Christandl, Distillation of Greenberger–Horne–Zeilinger states by combinatorial methods
IEEE Transactions on Information Theory, 65(9):5945–5958, 2019
arXiv, doi - Asger Kjærulff Jensen and Péter Vrana, The asymptotic spectrum of LOCC transformations
IEEE Transactions on Information Theory, 66(1):155–166, 2019
arXiv, doi - Péter Vrana and Matthias Christandl, Entanglement distillation from Greenberger–Horne–Zeilinger shares
Communications in Mathematical Physics, 352(2):621–627, 2017
arXiv, doi