Assignment:
PhD student
Degree:
-
Office:
H21
Telephone:
+36-1-463-2644
Email:
-
Courses
Tantárgy neve | Kurzus kód | Órarendi információ |
---|---|---|
Calculus 1 for Informaticians | BMETE90AX21/EN0-2 |
M. 10:15-12:00 (R516)
Tu. 10:15-12:00 (R516) |
Calculus 1 for Informaticians | BMETE90AX21/EN1-2 |
W. 10:15-12:00 (R508)
|
Teaching
2020/2021-2 : BMETETOPB22 Basic Mathematics 2: Algebra Part
2021/2022-1 : BMETETOPB22 Basic Mathematics 1: Geometry Part
2022/2023-1: BMETE90AX21-Analysis 1 for IT professionals
2022/2023-2: BMETE90AX02-Mathematics A2a - Vector Functions
I am currently working on Sphere Packings in Hyperbolic Geometry. The 'Spheres' are Classical Spheres, Horospheres, and Hyperspheres. I am also interested in the problem of optimal circles on the discontinuous (Coxeter) groups.
Most important publications
- Yahya, A., & Szirmai, J. (2023). Geodesic ball packings generated by rotations and monotonicity behavior of their densities in $\mathbf {H}^ 2\!\times\!\mathbf {R} $ space. arXiv preprint arXiv:2311.12260, https://doi.org/10.48550/arXiv.2311.12260
- Arnasli Yahya & Jenő Szirmai (2023) Optimal Ball and Horoball Packings Generated by Simply Truncated Coxeter Orthoschemes with Parallel Faces in Hyperbolic n-space for $4 \leq n \leq 6$, Arxiv preprint, https://doi.org/10.48550/arXiv.2305.05605
- Yahya, A. (2023). On Problem of Best Circle to Discontinuous Groups in Hyperbolic Plane. Mathematical Communications, 28, 121-140. https://www.mathos.unios.hr/mc/index.php/mc/article/view/4803/870
- Szirmai, J., & Yahya, A. (2023). Optimal ball and horoball packings generated by 3-dimensional simply truncated Coxeter orthoschemes with parallel faces. Quaestiones Mathematicae, 46(5), 1017-1037., DOI: 10.2989/16073606.2022.2048317
- Yahya, A., & Szirmai, J. (2021). Visualization of Sphere and Horosphere Packings Related to Coxeter Tilings by Simply Truncated Orthoschemes with Parallel Faces. KoG, 25(25), 64-71. https://hrcak.srce.hr/269217
Visualization of dirichlet voronoi cell of Coxeter group by double truncated orthoscheme: