Teaching
Mathematics A1a and A2a subjects (Calculus and Linear Algebra) for GTK Technical Managers in Hungarian
Similar subjects for engineering students, and Differential Geometry for Math BSc students
Research interest:
Riemannian geometry: study of harmonic manifolds;
Kneser–Poulsen-types problems
Most important publications
M. Horváth: Cubic sublattices Discrete & Computational Geometry (2023) SpringerLink, arXiv
B. Csikós, M. Horváth: Two Kneser–Poulsen-type inequalities in planes of constant curvature Acta Mathematica Hungarica 155 (1) 158–174. (2018) SpringerLink, arXiv
B. Csikós, M. Horváth: Harmonic Manifolds and Tubes Journal of Geometric Analysis 28 (4) 3458–3476. (2018) SpringerLink, arXiv
B. Csikós, M. Horváth: Harmonic Manifolds and the Volume of Tubes about Curves Journal of the London Mathematical Society 94 141–160. (2016) LMS, arXiv
B. Csikós, M. Horváth: A characterization of spaces of constant curvature by minimum covering radius of triangles, Indagationes Mathematicae 25 (3) 608–617. (2014) ScienceDirect
M. Horváth: Geodetikus gömbök metszetéről (On the intersection of geodesic balls), PhD dissertation in Hungarian (2013) pdf
B. Csikós, M. Horváth: A characterization of harmonic spaces, Journal of Differential Geometry 90 (3) 383–389. (2012) Project Euclid
B. Csikós, M. Horváth: On the volume of the intersection of two geodesic balls, Differential Geometry and its Applications 29 (4) 567–576. (2011) ScienceDirect
Links
website (in Hungarian)