Kód: BMETE94AM24;
Követelmény: 2/2/0/V/5;
Félév: 2022/23/1;
Nyelv: magyar;
Előadó: Dr. Szirmai Jenő (T0 kurzus)
Jelenléti követelmények. Az aláírás egyik feltétele az előadásoknak legalább 70%-án való részvétel. A jelenlétet minden alkalommal ellenőrizzük.
Félévközi számonkérések: 2 db 90 perces 25 pontos zárthelyi dolgozat (zh) .
1. zh: 7. hét; pótlás: 14. hét. Témája: Vektoralgebra, gömbi geometria
2. zh: 12. hét; pótlás: 14. hét. Témája: Egybevágóságok, poliéderek
Az aláírás feltétele -- a jelenléti követelmények teljesítésén túl, hogy mindegyik zh eredménye elérje a 10 pontot (40%).
Pótlási és javítási lehetőségek: A félév végén mindkét zárthelyi pótolható.
A vizsgajegy kialakítása: A vizsga szóbeli részből áll, amelyre 50 pont kapható, a teljesítéséhez itt is 40%-ot azaz 20 pontot el kell érni. A félévközi zárthelyikből megszerzett pontszámot, hozzáadjuk a szóbelin szerzett pontszámhoz. Az összegből a vizsga osztályzata az alábbi táblázat szerint adódik:
40 ponttól elégséges (2),
55 ponttól közepes (3),
70 ponttól jó (4),
85 ponttól jeles (5).
Konzultációk: az oktatóval való megegyezés szerint.
Ajánlott tankönyv:
Reiman István: A geometria és határterületei (Gondolat Kiadó),
I. P. Jegorov: Geometria (42281)
G.Horváth Ákos: Csodálatos geometria, Typotex, Budapest, 2013.
Hajós György: Bevezetés a geometriába (4219)
Reiman István, Nagyné Szilvási Márta: Geometria feladatok, Műegyetemi Kiadó 2005.
Strohmajer János: Geometria példatár II. (ELTE J3-443), Gömbháromszögtan (részlet)
Budapest, 2022. szeptember 1.
Dr. Szirmai Jenő
a tárgy előadója